Reg. No.			l i		
rieg					- 1

MANIPAL UNIVERSITY SCHOOL OF INFORMATION SCIENCES

SECOND SEMESTER MASTER OF ENGINEERING – ME (VLSI DESIGN)
DEGREE EXAMINATION – APRIL / MAY 2016

SUBJECT: EDA 616.11 (ELECTIVE 2) – ADVANCED LOGIC SYNTHESIS

Friday, May 6, 2016

Time:	100	n .	1 2 0	ATT	
I ime.	11111	11	1 4 1	() Hrc	1
11111	1 () ()	- 11	1 7 1		٠,

Max. Marks: 100

- 1. A. Define synthesis and name at least 4 optimization criteria for synthesis.
 - B. Write synthesizable Verilog code for a 4- bit shift register

(5x2=10 marks)

- 2. Give the general formula for Shannon expansion and expand the following by taking A as splitting variable.
 - A. F = AB + AC + BC
 - B. F = A'C+BC'+A'B'C+AB'C'

(5x2=10 marks)

3. Using Quine-McClusky method find the minimal SOP expressions of $F(w,x,y,z) = \sum 0.1,2,3,4,5,6,8,11,12,14$

(10 marks)

- 4. Simplify the following by applying the consensus theorem.
 - A. wxy+wx'z+wyz;
 - B. vw'y+vyz+wyz
 - C. ab'c + bc'd + ad
 - D. abc'd + c'd'e + abc'e
 - E. abc+c'd+a'b

(2x5=10 marks)

5. Find minimum for following two-level multiple-output for the function and mention the reduction in number of Inputs & Gates

$$F1(A,B,C,D) = \Sigma m (3,4,6,9,11),$$

$$F2(A,B,C,D) = \Sigma m (2,4,8,10,11,12),$$

$$F3(A,B,C,D) = \Sigma m (3,6,7,10,11)$$

(10 marks)

6. Explain the simplified design flow for FSM and draw a Moore machine for detecting an overlapped input sequence 10101.

(10 marks)

EDA 616.11

Page 1/2

7. Find the equivalence partition by iterated collapsed approach and a corresponding reduced machine for the following sequential machine:

PS	x = 0	x = 1
1	2, 0	5, 0
2	5, 0	4, 0
3	4, 1	1, 0
4	3, 1	5, 0
5	2, 0	4, 0

(10 marks)

8. Find the prime compatibles of the incompletely specified FSM shown below

PS	NS, Output			
	I1	12		
A	F,0	C,-		
B C	-,-	F,1		
	E,0	В,-		
D	A,1	D,0		
E	C,-	D,1		
F	A,0	A,-		

(10 marks)

9. Solve the following Binate covering problem using reduction techniques

$$F = (x1 + x2 + x4)(x4')(x2+x6)(x1 + x3 + x5 + x6)(x6' + x2 + x4)(x5' + x4 + x1)$$
(10 marks)

10. Consider the logic network defined by following expressions:

- A. Draw the logic network graph.
- B. Perform the algebraic division f_x/f_y and show all steps.
- C. Substitute y into f_x and redraw the network graph.
- D. Compute all kernels and co-kernels of z and u.
- E. Extract a multiple-cube sub-expression common to f_z and f_u . Show all steps. Redraw the network graph.

(2x5=10 marks)
