	Reg. No.	
Manipal Institute of Technology, Manipal (A Constituent Institute of Manipal University)		
VI SEMESTER B.TECH (AERONAUTICAL/AUTOMOBILE ENGINEERING) END SEMESTER EXAMINATIONS, MAY 2016		
SUBJECT: COMPUTATIONAL AERODYNAMICS [AAE 334]		
REVISED CREDIT SYSTEM Time: 3 Hours MAX. MARKS: 50		
	Instructions to Candidates:	
	 Answer ANY FIVE FULL questions. Missing data may be suitable assumed. 	
1A.	Write a note on substantial derivative.	(02)
1B.	Explain with sketches, the four different models of flow.	(02)
1C.	Derive the expressions for Navier- Stokes equation in non-conservative form.	(06)
2A.	Explain the types of boundary conditions used in numerical analysis.	(02)
2B.	 Differentiate between I. Conservative and non-conservative forms of governing equations II. Finite difference and finite volume method III. Explicit and implicit approaches in numerical scheme IV. Transportiveness and Boundedness 	(08)
3A.	Write the solution capsule for ADI method.	(04)
3B.	Describe Von – Newmann stability criteria. Check for the stability of Simple Implicit finite difference method used in unsteady heat conduction equation.	(06)
4A.	Classify 2 nd order partial differential equations based on their Eigen values.	(02)
4B.	 Write a brief note on: I. Peclet number II. Physical meaning of divergence of a velocity III. Numerical False diffusion IV. SIMPLE 	(08)

5. Two plates are 5 cm apart as shown in figure (1). Initially, both plates and (10) the fluid are still. The top plate is moved at constant velocity of 7cm/s. The governing equation of motion of fluid is:

$$\frac{\partial v}{\partial t} = \mu \frac{\partial^2 v}{\partial x^2}$$

What is the velocity of the fluid at distances x= 2, 4, 6 and 8 from the bottom plate at t = 0.5 sec. Note: Use Crank-Nicolson method with Δt = 0.5s, μ =3cp.

6. Convective heat transfer along the length of a cylindrical fin of uniform cross- (10) sectional area, A is shown in figure (1). Its base is at a temperature of 100°C (T_B) and the end is insulated. The fin is exposed to an ambient temperature of 20°C. One-dimensional heat transfer is governed by

$$\frac{d}{dx}\left(kA\ \frac{dT}{dx}\right) - hP\left(T - T_{\infty}\right) = 0$$

Where 'h' is convective heat transfer coefficient, 'p' is perimeter, 'k' is thermal conductivity of the material, T_{∞} ' the ambient temperature and length of the fin, 'L'= 1 m. Calculate the temperature distribution along the fin using **control volume approach.**

Fig. (2)