

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University, Manipal – 576 104

6th SEMESTER B.Tech. (BME) DEGREE MAKE-UP EXAMINATIONS, JUNE/JULY 2016 SUBJECT: BIOFLUIDS & BIOMECHANICS (BME 320)

(REVISED CREDIT SYSTEM) Wednesday, June 29th, 2016 : 2.00 pm - 5.00 pm

TI	ME: 3	HOURS ANSWER ANY FIVE FULL QUESTIONS	MAX. MARKS: 10)0
1.	(a)	Why RBCs are highly deformable compared to other cells?	[2]	
	(b)	Explain about plasma skimming.	[4]	
	(c)	Explain why aorta and vene cava are called as pressure and volume respectively?	reservoirs [6]	
	(d)	Draw the rheological diagram showing various types of fluids and explain	them. [8]	
2.	(a)	What happens to the hematocrit when it has to flow through blood unequal diameters?	vessels of [2]	
	(b)	Define the features of viscoelasticity.	[4]	
	(c)	By considering the blood composition, describe why blood is a Non-I fluid.	Newtonian [6]	
	(d)	Write about the viscoelastic nature of sputum and cervical mucus.	[8]	
3.	(a)	How much is the airway resistance in the upper and terminal airways?	[2]	
	(b)	What are the clinical applications of Blood Rheology?	[4]	
	(c)	Explain the various types of stress and strain.	[6]	
	(d)	How does thrombosis and thromboembolism affect the fluid dynamics of valves?	prosthetic [8]	

4.	(a)	Write a note on congestive heart failure.	[2]
	(b)	Explain the measuring principle of Cutometer.	[4]
	(c)	What are the three wall materials of the blood vessels? Explain them in detail.	[6]
	(d)	Draw the structure of collagen and explain it in detail.	[8]
5.	(a)	What causes diastolic murmur?	[2]
	(b)	Bone is an anisotropic material and its mechanical behavior depends upon the direction of loading. Comment on it.	[4]
	(c)	Draw the stress-strain diagram of trabecular bone and explain it in detail.	[6]
	(d)	Define the temporal parameters of a gait cycle.	[8]
6.	(a)	How do the slow twitch and fast twitch muscle fibers handle a prestretch?	[2]
	(b)	Write the functions performed by a muscle.	[4]
	(c)	With appropriate examples, write about the muscle action that creates, opposes, stabilizes and neutralizes movements.	[6]
	(d)	Explain in detail, the process of muscle excitation-contraction coupling.	[8]