Reg. NO.	Reg	. N	lo.
----------	-----	-----	-----

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

VI SEMESTER B.TECH (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, MAY 2016

SUBJECT: CHEMICAL REACTION ENGINEERING 2 [CHE 306]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL the questions.
- Missing data may be suitable assumed.

1A.	A pulse study was performed on a real reactor. A first order reaction $A \rightarrow R$ is carried out in this reactor of dia. 10 cm and length 2 m. The specific reaction rate is 0.1 min ⁻¹ . Calculate conversion using a) Tank in series model; b) PFR; c) Single CSTR. $\frac{t (s): 0 \ 1 \ 5 \ 10 \ 15 \ 20 \ 25 \ 30 \ 35 \ 40 \ 50 \ 60 \ 80}{C_A \ 0 \ 0.25 \ 0.38 \ 0.55 \ 0.58 \ 0.51 \ 0.39 \ 0.22 \ 0.11 \ 0.05 \ 0.02 \ 0.01 \ 0.0}$											15
1B.	 a). If an impulse and later a step input is given to an ideal PFR, CSTR and a non-ideal reactor. How different will the input and output for each of them be? (Explain using conc. vs. time plots). b). Say we have a tubular reactor, which upon analysis revealed non-ideality due to dispersion (not dead zones). But the conversion obtained from the application of the present Dispersion model did not fully explain the non-ideality. Explain with logical reasons. 											5
2.	Derive an expression for concentration and effectiveness factor for a 1 st order irreversible reaction $A \rightarrow$ products. Where diffusion is taking place in a cylindrical pore.											20
3A.	Say a reaction A + 2B \rightarrow 2C + D is conducted in an adiabatic CSTR, what is the reactor volume and space time necessary to achieve 35% conversion of A? The reaction rate is first order in A and second order in B. Data: $\begin{array}{c} \Delta H_R = -370.1 \text{ kJ/mol} \\ Cp_A = 84.5 \text{ J/(mol K)} \\ Cp_B = 137 \text{ J/(mol K)} \\ Cp_C = 170 \text{ J(mol K)} \\ Cp_D = 75 \text{ J/(mol K)} \\ Cp_D = 75 \text{ J/(mol K)} \\ \end{array}$ $\begin{array}{c} T_O = 303 \text{ K} \\ F_{AO} = 10 \text{ mol/min} \\ F_{BO} = 30 \text{ mol/min} \\ W_0 = 1000 \text{ L/min} \\ C_{AO} = 0.01 \text{ mol/L} \\ \end{array}$ $\begin{array}{c} k = 0.090 \text{ exp} \left[(40 \text{ kJ/mol})/\text{R} (1/303 - 1/\text{T}) \right] (\text{L/mol})^2 (\text{min})^{-1} \end{array}$											15
3B.	Derive an expression for heat load for a non-isothermal continuous flow reactor.										5	

4A.	With a neat sketch relate time and conversion for a spherical particle of constant size, when the controlling resistance is diffusion through the ash layer.										10	
4B.	Find an interim rate expression for the following catalytic reaction when surface reaction is controlling. A \rightarrow B. Include the inhibition step.										10	
5A.	Calculate the BET surface area per gram of solid for a sample, using the full BET equation and the one-point BET equation (where the constant is assumed to be a very large value).Are the values same? What is the BET constant? P/P_0 0.02 0.03 0.04 0.05 0.1 0.15 0.2 0.25 0.3 Vol. adsorbed (cm ³ /g) 23.0 25.0 26.5 27.7 31.7 34.2 36.1 37.6 39.1										15	
5B.	Explain with a neat diagram, the SCM and PCM models.											5
6A.	In a number of separate runs different concentrations of substrate and enzyme are introduced into a batch reactor and allowed to react. After a certain time the reaction is quenched and the vessel contents analyzed. From the results found below find a rate equation to represent the action of enzyme on substrate. $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$										12	
6B.	Write a note on Multiple Steady States.										8	