Reg.No.					
8					

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY

SIXTH SEMESTER B. TECH. CHEMICAL ENGINEERING END SEMESTER EXAMINATION MAY 2016

SUBJECT: O.E.: INDUSTRIAL POLLUTION CONTROL (CHE 324)

Time: 3 HOURS

Max.Marks: 100

Note: Answer **ANY FIVE FULL** questions Each question carries 20 Marks

1 A	Draw a neat self-explanatory diagram of the sulphur cycle.	6
1 B	What is the significance of the following:	
	i) Volatile solids	
	ii) Turbidity	
	iii)Temperature	
	iv)Alkalinity	
	v) Acidity	
	vi)BOD	
1 C	Explain the principle and working of any 2 methods (each) to collect gaseous	8
	sample and particulate sample from air.	

2 A	Explain any 2 technologies used in tertiary treatment of wastewater.			
2 B	Differentiate between Anaerobic and Aerobic treatment of wastewater.(Any	5*2=10		
	5)			

3 A	Draw a neat flowchart with schematic diagrams of each treatment process in	10
	primary treatment of wastewater.	
3 B	Discuss deviations from isokinetic condition of sampling particulate matter	4
	from a stack.	
3 C	Explain the three basic cases of atmospheric stability.	3*2=6

4 A	Describe the three approaches for capture of CO_2 involved in Carbon	10		
	sequestration.			
4 B	Describe how	2.5*4=10		
	i) NOx pollution is controlled by flue gas recirculation			
	ii) NOx pollution is controlled by water/steam injection			
	iii) Particulate emission is controlled using bag filter			
	iv) Particulate emission is controlled using electrostatic precipitator			

5 A	A steel plant located 4 km outside the western edge of a city has a smelter with a stack 150 m high. Plume rise is 576 m. Volumetric flow rate of flue gas emitted from stack is 3141.5 m ³ /s. Density of flue gas is 1.2 kg/m^3 . Wind is blowing eastward at a speed of 3 m/s. It is a sunny day (strong solar radiation). Assume that the pollutant concentration at the plume centerline is blown into the city whose dimensions are 3 km northwards and 4 km eastwards. Given, emission density in the city is $5*10^{-4} \text{ g/s.m}^2$ and the mixing height of the city is 400 m. Considering the entire city to be enclosed in a box and that fixed box model is applicable, what is the concentration of pollutant in the city?	10
5 B	Explain the different processes for sludge treatment (in not more than 2 or 3 sentences per process).	10

6 A	How is e-waste managed by the following methods?	10
	i) Production process modification	
	ii)Sustainable product design	
6 B	Describe methods adopted to control noise pollution in industry.	10