	Reg. No.								
Manipal (A C	nstitute of Te onstituent Institute of		-	• •		nipa	l 🖟	KNOWLED	GE IS POWER
INSPIRED BY LIFE VI SEN	MESTER B.TECH (CHE	MICAL	ENGIN	JEERI	NG)				
EN	ID SEMESTER EXAMI	NATION	NS, MA	Y 201	6				
SUBJECT: PROCE	ESS DESIGN AND DRA	WING I	N CHE	MICA	LEN	IGINE	ERIN	G	
	(CHE3	302)							

Time: 4 Hours

MAX. MARKS: 100

Instructions to Candidates:

- ✤ Answer ANY ONE FULL question.
- ✤ Missing data may be suitably assumed.
- ✤ Use of IS 2825-1969 and IS 4507- 1967 is permitted

1. The mechanical design of a standard (calendria) vertical short tube evaporator with the help of the following data:

Evaporator drum : operating under vacuum	Calendria with vertical tubes					
Amount of water evaporated : 2500kg/hr	Tubes and tube lay out :					
Heat transfer area : $220m^2$	Tube diameter (outside) : 100mm					
Steam pressure : 0.15 N/mm^2	Tube thickness : 1.5mm					
Density of liquid : 1000kg/m ³	Tube length : 1220mm					
Material of construction (MOC) :	The effective tube length : 1165mm					
Evaporator : carbon steel IS- 2062	Tube lay out : triangular pitch : 125mm					
Tubes : brass						
Permissible stress for carbon steel : 98N/mm ²	Bottom flange of the calendria					
Modulus of elasticity :	Flange material – IS-2004-1962 Class -2					
Carbon steel : $19.0 \times 104 \text{ N/mm}^2$	Bolting material : 5% Cr Mo Steel					
Brass : 9.5 x 104 N/mm ²	Gasket material : asbestos composition					
Conical head bottom : cone angle 120°	(1.6mm thickness)					
Torispherical head at top : $(100-10)$	Out side diameter : 3894mm					
Poisons ration : 0.3	Pitch circle diameter : 3825mm					
	Number of bolts : 112					
	Flange joint : Lap joint					
Support (Bracket) design:						
Height of vessel : 5 m	Length of drum – 4000mm					
Clearance from bottom to foundation – 1mm	Operating temperature – 120°C					
Density of carbon steel -7820 kg/m ³	Top head connected with drum : Flange (IS-					
Density of brass $- 8450 \text{kg/mm}^3$	2004-1962 Class -2)					
Wind pressure -128.5 kg/m^2	, , , , , , , , , , , , , , , , , , , ,					
Number of brackets – 4						
Height of bracket from foundation – 2.25m						
Permissible stress for structural steel:						
Tension $- 1400 \text{kg/cm}^2$,						
Compressive -1233 kg/cm^2 ,						
Bending -1575 kg/cm^2 .						

2. Design shell and tube heat exchanger (2 pass STHE) with the help of following data

Т

Shell side	Tube side					
MOC: carbon steel	Tube and tube sheet material : stainless					
Number of shell : 1	steel (SS 304)					
Number of passes : 1	Number of tubes – 54					
Fluid : liquid	Outside diameter – 18mm					
Working pressure : 0.33 N/mm ²	Length (maximum U) – 12m					
Design pressure : 0.50 N/mm ²	Pitch (square) – 25mm					
Temperature inlet : 30°C	Fluid – gas					
Temperature outlet : 50°C	Working pressure -19 N/mm ²					
Segmental baffles (25% cut) with tie rods spacers	Design pressure -21.5 N/mm ²					
Head	Inlet temperature -150° C					
Crown radius : 400mm	Outlet temperature $-55^{\circ}C$					
Knuckle radius : 40mm	Permissible stress – 100.6 N/mm ²					
Shell flange : female facing						
Gasket : flat metal – jacketed asbestos filled	Channel and channel cover					
Bolts – steel	Material – carbon steel (IS-2062)					
Nozzles – inlet and outlet – 75mm	Joint with tube sheet – ring facing					
Vent - 25mm	Gasket – steel jacked asbestos					
Drain – 25mm	Nozzle – inlet and outlet dia. – 75mm					
Opening for relief valve – 50mm	Permissible stress – 95 N/mm ²					
Permissible stress for carbon steel – 95 N/mm ²						
Permissible stress for bolt material–140.6N/mm ²						