Reg. No.						
----------	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

VI SEMESTER B.TECH (CIVIL ENGINEERING)

END SEMESTER EXAMINATIONS, MAY /JUNE 2016

SUBJECT: FINITE ELEMENT METHOD OF ANALYSIS [CIE 328]

REVISED CREDIT SYSTEM

Time: 3 Hours

11/05/2016

MAX. MARKS: 50

Instruc	tions to	o Candida	ates:

Answer any **FIVE FULL** questions.

Missing data may be suitable assumed. \div

1A.	List the various types of problems where one dimensional element is used. Write the degrees of freedom for each of these problems	4
1B.	What is shape functions? Explain the various steps to obtain the shape functions for an element	4
1C.	List the advantages of finite element method	2
2A.	What is transformation matrix T. show $T^T=T^{-1}$	2

Analyse the axially loaded structure shown in figure Fig. Q. 2A. Take modulus of elasticity

	equal to $2 \times 10^7 \text{kN/m}^2$ for all the elements.			
2B.	$4 0.9 \text{ m} \rightarrow 40 \text{ kN} \rightarrow 30 \text{ kN}$ $20 \text{ kN} 4 25 \text{ kN} \rightarrow 40 \text{ kN} \rightarrow 30 \text{ kN}$ $1.2 \text{ m} \rightarrow 1.2 \text{ m} \rightarrow 42=0.12 \text{ m}^2$ $A1=0.24 \text{ m}^2$ Fig. Q 2A	8		
3A.	Using the principle of minimum potential energy explain the procedure to obtain equivalent nodal load vector for a two noded plane frame element of length L due to i) a point load P kN acting along the axis of the element at center and ii) uniformly distributed load of intensity W kN/m	5		
3B.	A pin jointed structure with coordinates (0,0,0) at node 1, (3,-2,2) at node 2 and (-3,-2,-2) at node 3 consists of two members connected at node 1. Nodes 2 and 3 are provided with a fixed support and a load of 100 kN and 60 kN are applied at the node 1 along positive X and Y directions respectively. Obtain the equilibrium equation for the structure if node 1 is prevented from displacement along Z direction. Take $E=2x \ 10^7 \text{kN/m}^2$ and area of both the members as 0.12 m^2	5		
4A.	Two noded cantilever beam element of length 3 m and EI=1 00 kNm ² is fixed at node 1. Calculate the forces in the element if it is subjected to the following loads:	6		

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

INSPIRED BY LIFE

i) a point load of 60 kN acting down word at node 2ii) uniformly distributed load of 20 kN/miii) clockwise moment of 25 kNm at node 2 4B. Obtain the shape functions for three noded triangular element 4566 Explain i) numerical integration technique ii) displacement model	SPIRED	BY LIFE	
4B. Obtain the shape functions for three noded triangular element 45A. Calculate the strains for the three noded triangular element with coordinates (0,0) at node 1, (1.2, 0) at node 2 and (0, 0.8) at node 3. The displacement at nodes along X direction and Y direction are as follows: $ul= 0 vl= 0 u2=1.2x 10^{-3} m$, $v2=-1.6x 10^{-4} m u3 = 0 v3=1.12x 10^{-3} m$ 55B. Obtain the stress-strain relationships for i) three dimensional stress conditions ii) plane stress condition, What is the use of these relations in finite element analysis. 56A. Obtain the Jocobian matrix for a quadrilateral element with coordinates at (1,1), (3,2), (3,6) and (1,5) at the natural coordinated r=0.25 and s= -0.25 56B. Explain i) numerical integration technique ii) displacement model 5		 i) a point load of 60 kN acting down word at node 2 ii) uniformly distributed load of 20 kN/m iii) clockwise moment of 25 kNm at node 2 	
5A.Calculate the strains for the three noded triangular element with coordinates (0,0) at node 1, (1.2, 0) at node 2 and (0, 0.8) at node 3. The displacement at nodes along X direction and Y direction are as follows: $ul= 0$ vl= 0 u2=1.2x10 ⁻³ m , v2=-1.6x10 ⁻⁴ m u3 = 0 v3=1.12x10 ⁻³ m55B.Obtain the stress-strain relationships for i) three dimensional stress conditions ii) plane stress condition, What is the use of these relations in finite element analysis.56A.Obtain the Jocobian matrix for a quadrilateral element with coordinates at (1,1), (3,2), (3,6) and (1,5) at the natural coordinated r=0.25 and s= -0.2556B.Explain i) numerical integration technique ii) displacement model5	4B.	Obtain the shape functions for three noded triangular element	4
5B.Obtain the stress-strain relationships for i) three dimensional stress conditions ii) plane stress condition, What is the use of these relations in finite element analysis.56A.Obtain the Jocobian matrix for a quadrilateral element with coordinates at (1,1), (3,2), (3,6) and (1,5) at the natural coordinated r=0.25 and s= -0.2556B.Explain i) numerical integration technique ii) displacement model5	5A.	Calculate the strains for the three noded triangular element with coordinates (0,0) at node 1, (1.2, 0) at node 2 and (0, 0.8) at node 3. The displacement at nodes along X direction and Y direction are as follows: $ul=0$ $vl=0$ $u2=1.2x10^{-3}$ m, $v2=-1.6x10^{-4}$ m $u3=0$ $v3=1.12x10^{-3}$ m	5
6A.Obtain the Jocobian matrix for a quadrilateral element with coordinates at (1,1), (3,2), (3,6) and (1,5) at the natural coordinated r=0.25 and s= -0.2556B.Explain i) numerical integration technique ii) displacement model5	5B.	Obtain the stress-strain relationships for i) three dimensional stress conditions ii) plane stress condition, What is the use of these relations in finite element analysis.	5
6B. Explain i) numerical integration technique ii) displacement model5	6A.	Obtain the Jocobian matrix for a quadrilateral element with coordinates at $(1,1)$, $(3,2)$, $(3,6)$ and $(1,5)$ at the natural coordinated r=0.25 and s= -0.25	5
	6B.	Explain i) numerical integration technique ii) displacement model	5