

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

VI SEMESTER B.TECH (CIVIL ENGINEERING)

END SEMESTER EXAMINATIONS, MAY/JUNE 2016

SUBJECT: GEOTECHNICAL ENGINEERING II [CIE 302]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL the questions.
- ✤ Missing data may be suitable assumed.

1A.	A square group of 9 friction piles of 300mm diameter with 1200mm c/c spacing and	
	9m length is subjected to net load of 2500kN. The details of the soil properties are	
	given below with reference to the ground level as datum.	

	-	Depth ir	n m	Soil Properties		
		From	То	-		
		0	4	Clay, $\gamma = 16.5 \text{ kN/m}^3$, $\gamma_{\text{sat}} = 18.5 \text{ kN/m}^3$		6
		4	16	Clay γ_{sat} =19.5 kN/m ³ , C _c =0.25, e ₀ =0.80		•
		16	21	Clay γ_{sat} =20.5 kN/m ³ , C _c =0.20, e ₀ =0.70		
		21	-	Hard rock		
	Estimate t	he conso	olidation	settlement when the water table is at 2m fro	om ground	
	level and	assumin	g 30° lo	ad distribution from 2/3 of the pile length. A	lso take 3	
	layers (eac	h 5m thi	ck) for t	he calculation of the consolidation settlement.		
1B.	Discuss sta	andard p	enetratio	n test. What are the various corrections?		4
2A.				learance" and "outside clearance" as applied to ention the permissible values.	a sampler.	3
2B.	Explain the	e constru	ction of	bored compaction pile foundation.		3
2C.	recently fi 0.6m c/c.	lled soil Taking	of 2.5m cohesion	ion? A square pile group of 9 piles penetrates a depth. The pile diameter is 300mm and pile of the soil as 20 kN/m ² , unit weight as 15 k 0.5, compute the negative skin friction.	spacing is	4
3A.	List the c sketch.	haracteri	stics of	general shear failure and local shear failure	with neat	4
3B.	List the for	rces actii	ng on we	Il foundation And explain any two forces.		3
3C.	frequency of the osc	of 25 cp illator is the maxi	s in a ve s 900N a	astic uniform compression if the resonance occ rtical vibration of a test block 1m X 1m X1m. and the force produced by it after 20 cycles is applitude in the vertical direction. Take weight	the weight s 1700 N.	3
4A.	A square footing of size 2m x 2m carries a net safe load of 500 kN. The supporting soil is clayey sand having the following properties: $c=12 \text{ kN/m}^2$, $\phi=25^\circ$ and $\gamma=18 \text{ kN/m}^3$. Find the depth at which the footing is to be located when the water table is at					
CI	E 302			Page 1 of 2		

KNOWLEDGE

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

INSPIRED BY LIFE

RED BY	LIFE	TEO			
4B.	a great depth such that the factor of safety of 3.0 is assured. What would be the size of the square footing if the water table rises to the ground level with the same foundation depth? (Take $\gamma_{sat}=19.5 \text{ kN/m}^3$). Use Terzaghi's method. Define a) Allowable bearing capacity b) Safe bearing capacity c) Ultimate bearing capacity the method same foundation depth.	3			
4C.	bearing capacity. Also give the mathematical expression to determine the same.Draw a neat sketch of well foundation and name the parts.	2			
5A.	A finite slope of height 10m is inclined at 45° with respect to horizontal. If the center of slip circle is defined by Fellinius directional angles $\alpha = 35^{\circ}$ and $\beta = 26^{\circ}$, calculate factor of safety against toe failure of the slope given $\gamma = 18$ kN/m ³ , c= 10 kN/m ² and $\phi = 30^{\circ}$. Take width of slice as 4m.	6			
5B.	A 5m high retaining wall having smooth vertical back supports a cohesive soil with horizontal surface. The top layer is 2.5m thick with $\gamma = 17 \text{ kN/m}^3$, c= 10 kN/m ² and $\Phi=15^\circ$. The bottom layer is 2.5m thick with $\gamma = 18 \text{ kN/m}^3 \gamma_{sat} = 19.2 \text{ kN/m}^3$, c= 9 kN/m ² and $\Phi=20^\circ$. The water table is found at 2.5m depth from top of the retaining wall. Plot the active pressure distribution diagram after the development of tension crack.	4			
6A.	A retaining wall of 10m height retains a backfill with a uniform horizontal backfill having soil properties $\gamma = 18 \text{ kN/m}^3$ and $\Phi=30^\circ$. The wall interface is vertical with angle of wall friction to be 20°. Determine the magnitude of passive earth pressure using Coulomb's method.	3			
6B.	List the assumption made in the Rankines theory of lateral earth pressure. Distinguish between the two extreme cases of limit equilibrium conditions in earth pressures with one example each.	4			
6C.	A cutting of 8m deep is to be made in a clayey soil having $\gamma = 17$ kN/m ³ and c = 18 kN/m ² . A hard stratum exists at a depth of 14m below ground level. Using Taylor's stability table find if 25° slope is safe or not. For factor of safety of 1.25, find the safe slope angle.				

DI	1.0	1.50	2.0	3.0	00
53°	0.181	0.181	0.181	0.181	0.181
45°	0.164	0.174	0.177	0.180	0.181
30°	0.133	0.164	0.172	0.178	0.181
22.5°	0.113	0.153	0.166	0.175	0.181
15°	0.083	0.128	0.150	0.167	0.181
7.5°	0.054	0.080	0.107	0.140	0.181

Terzaghi's Bearing Capacity Factors						
ф	Nc	N _q	Nγ	N _c '	N ₉ '	Ν _γ '
10	9.6	2.7	1.2	8	1.9	0.5
15	12.9	4.4	2.5	9.7	2.7	0.9
20	17.7	7.4	5	11.8	3.9	1.7
25	25.1	12.7	9.7	14.8	5.6	3.2