

MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL 576104

Reg. No.

(Constituent College of Manipal University)

SIXTH SEMESTER B-TECH. (CCE) DEGREE MAKEUP EXAMINATION JUNE/JULY 2016 SUBJECT: DATA MINING AND PREDICTIVE ANALYSIS- ICT 354 (REVISED CREDIT SYSTEM)

TIME: 3 HOURS

01/07/2016

MAX. MARKS: 50

Instructions to candidates

Answer any FIVE FULL questions.

Missing data, if any, may be suitably assumed.

Apply Apriori partitioning algorithm on the dataset given in Table Q.1A. Number of partitions=3, 1A. global support=3. Generate association rule by considering confidence=60%.

Table O. 1A

T_ID	Itemsets
T1	1,2,3,4,
T2	1,2,4
T3	1,2
T4	2,3,4
T5	2,3
T6	3,4

- Write and explain Generalised Sequential Pattern algorithm with an example. 1B.
- Write a note on data mining applications in finance. 1C.

[5+3+2]

Given Min_Sup=3, apply FP Tree algorithm on the dataset given in Table Q.2A to obtain the 2A. frequent patterns.

Table O.2A

100	(
	T-ID	Itemsets	
	T1	1,2,4	
	T2	1,3,4,5	
	T3	1,4,5,6	
	T4	2,5,6	
	T5	1,2,4,5,6	

2B. Obtain average link hierarchical cluster for the following data.

 $A = (0.4, 0.4, 0.5) \quad B = (0.1, 0.8, 0.1) \quad C(0.3, 0.3, 0.4) \quad D = (0.1, 0.1, 0.8) \quad E = (0.4, 0.2, 0.4) \quad F = (0.1, 0.4, 0.5)$

G=(0.7,0.2,0.1) H=(0.5,0.4,0.1)

The pincer search algorithm finds only maximal frequent sets. Justify. 2C.

[5+3+2]

Apply Dynamic Itemset Counting algorithm for the dataset given in Table Q.3A 3A.

Table Q. 3A

T_ID	Itemsets	
1	Burger, Coke, Juice	
2	Juice, Potato chips	
3	Coke, Burger	
4	Juice, Groundnuts	
5	Coke, Groundnuts	

ICT-354

Page 1 of 2

0123 May Swathi B.P Swall of BH, S, 6. Mas Marjula Shenoy k & S

- Explain with an example how the following approaches improves the efficiency of Apriori 3B. algorithm:
 - i. Hash based technique
 - ii. Transaction reduction.
- Explain majority voting with an example.

[5+3+2]

Obtain decision tree for the dataset given in Table Q.4A 4A.

Table Q.4A

Wings Maint.	Engs	Nose	Intake	Fuselage	Class
Mid	1	Hat	Nose	Cigar	Foreign
Mid	2	Hat	Nose	Sluck	Foreign
Low	1	Snule	Nose	Sluck	Foreign
High	3	Point	Body	Thick	Domestic
High	4	Point	Body	Thick	Domestic

- What is the advantage of gain ratio over Information Gain? Explain with an example. 4B.
- What type of pruning is used in CART? Explain. 4C.

[5+3+2]

Apply PAGERANK algorithm for the following web pages: 5A. $A \rightarrow B$, $A \rightarrow D$, $A \rightarrow C$, $B \rightarrow C$, $B \rightarrow A$, $C \rightarrow D$, $D \rightarrow C$, $D \rightarrow A$.

List out the real time applications of spatial and temporal data mining.

- K-means algorithm is sensitive to outliers. Justify. 5B.
- Explain KDD process with an example for each step. 5C.

[5+3+2]

List out the difference between symmetric and asymmetric binary variables. Find the dissimilarity 6A. matrix for the dataset given in Table Q.6A.

Table O.6A

Car (Nominal)	Range (Ordinal)	Quality [0-bad, 1-Good] Asymmetric binary	
1	Red	Senior	
2	Green	Junior	
3	Blue	Mid	
4	Green	Senior	

- Give an example to show that items in a strong association rule may actually be negatively 6B,
- List the mathematical properties satisfied by Euclidean and Manhattan distance. 6C.

[5+3+2]