

MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL 576104

(Constituent College of Manipal University)

SIXTH SEMESTER B.TECH DEGREE END SEMESTER EXAMINATION-MAY 2016 SUBJECT:OPEN ELECIVE-II MACHINE LEARNING (ICT 364) (REVISED CREDIT SYSTEM)

TIME: 3 HOURS

16/05/2016

MAX. MARKS: 50

Instructions to candidates

- Answer any FIVE FULL questions. All questions carry equal marks.
- Missing data if any, may be suitably assumed.
- 1A. What do you understand by the term hypothesis function? Derive normal equation for parameter θ as per the LMS algorithm.
- 1B. For logistic regression, derive the relation for parameter updation.
- 1C. A generalized linear model assume that the response variable y (conditioned on x) is distributed according to a member of the exponential family:

$$p(y; \eta) = b(y) \exp(\eta^T T(y) - a(\eta)).$$

Show that the Bernoulli distribution is an example of exponential distribution.

[5+3+2]

2A. Suppose you are given a dataset $\{(x^{(i)}, y^{(i)}); i = 1, ..., m\}$ consisting of m independent examples, where $x^{(i)} \in \mathbb{R}^n$ are n-dimensional vectors, and $y^{(i)} \in \{0, 1\}$. You will model the joint distribution of (x, y) according to:

$$p(y) = \phi^{y} (1 - \phi)^{(1 - y)}$$

$$p(x|y = 0) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_0)^T \Sigma^{-1} (x - \mu_0)\right)$$

$$p(x|y = 1) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_1)^T \Sigma^{-1} (x - \mu_1)\right)$$

Here, the parameters of the model are ϕ , Σ , μ_0 and μ_1 . The log-likelihood of the data is given by

$$l(\phi, \mu_0, \mu_1, \Sigma) = \log \prod_{i=1}^{m} p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)$$
$$= \log \prod_{i=1}^{m} p(x^{(i)}|y^{(i)}; \mu_0, \mu_1, \Sigma) p(y^{(i)}; \phi)$$

By maximizing l with respect to the four parameters, derive the relation for ϕ, μ_0, μ_1 , and Σ .

- 2B. Frame the optimal margin classifier as an optimization problem.
- 2C. Bias and variance are the twin evils of machine learning. With appropriate diagrams explain the bias-variance trade off and behavior of the model.

[5+3+2]

- 3A. Suppose, you have a supervised learning problem where the number of features n is very large $(n \gg m)$, but you suspect that there is only a small number of features that are "relevant" to the learning task. Explain various techniques for feature selection.
- 3B. Suppose, you have an estimation problem in which you have a training set $\{x^{(1)}, \ldots, x^{(m)}\}$ consisting of m independent variables. You wish to find the parameters of a model p(x, z) to the data, where the likelihood is given by

$$l(\theta) = \sum_{i=1}^{m} \log p(x; \theta)$$
$$= \sum_{i=1}^{m} \log \sum_{z} p(x, z; \theta)$$

But the explicit finding the maximum likelihood estimates of parameter θ may be hard. Also, here $z^{(i)}$'s are latent variable. For such a setting, the EM algorithm gives an efficient method for maximum likelihood estimation. Establish preliminary relation required for applying EM algorithm as per the Jensen's inequality.

3C. Given γ and some $\delta > 0$, how large must m be before you can guarantee that with probability at least $1 - \delta$, training error will be within γ of generalization error? Assume $\delta = 2k \exp(-2\gamma^2 m)$.

[5+3+2]

4A. Marginal distributions of Gaussians are themselves Gaussians, and as per the definition of the multivariate Gaussian distribution, it is known that $x_1|x_2 \sim \mathcal{N}(\mu_{1|2}, \Sigma_{1|2})$, where

$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma^{-1} (x_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma^{-1} \Sigma_{21}$$

In a factor analysis model, assume a joint distribution on (x, z) as follows

$$z \sim \mathcal{N}(0, I)$$

 $x|z \sim \mathcal{N}(\mu + \Lambda z, \Psi)$

where $\mu \in \mathbb{R}^n$, $\Lambda \in \mathbb{R}^{n \times k}$, and the diagonal matrix $\Psi \in \mathbb{R}^{n \times n}$, (k < n). Workout the expression for the log likelihood of the parameters $l(\mu, \Lambda, \Psi)$.

- 4B. Let a sequence of examples $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(m)}, y^{(m)})$ be given. Suppose that $||x^{(i)}|| \leq D$ for all i, and further that there exists a unit-length vector u such that $y^{(i)}.(u^Tx^{(i)}) \geq \gamma$ for all examples in the sequence. Show that the total number of mistakes that the perceptron algorithm makes on this sequence is at most $(D/\gamma)^2$.
- 4C. What do you understand by the term mixture of Gaussians?

[5+3+2]

- 5A. Consider a learning problem in which you have a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_k\}$ consisting of k hypothesis. Show that if uniform convergence occur, the generalization error of \hat{h} is at most 2γ worse than the best possible hypothesis in \mathcal{H} .
- 5B. What do you mean by a convex function? Why is it so important in optimization theory?
- 5C. The following questions require a true/false or a short answer.

- i) Let there be a binary classification problem with continuous-valued features. What will the decision boundary look like if we model the two classes using separate covariance matrices Σ_0 and Σ_1 ?
- ii) Let any $x^{(1)}, x^{(2)}, x^{(3)} \in \mathbb{R}^p$ be given $(x^{(1)} \neq x^{(2)}, x^{(1)} \neq x^{(3)}, x^{(2)} \neq x^{(3)})$. Also let any $z^{(1)}, z^{(2)}, z^{(3)} \in \mathbb{R}^q$ be fixed. Then there exists a valid Mercer kernel $K : \mathbb{R}^p \times \mathbb{R}^p \mapsto \mathbb{R}$ such that for all $i, j \in \{1, 2, 3\}$ we have $K(x^{(i)}, x^{(j)}) = (z^{(i)})^T z^{(j)}$. True or False?

[5+3+2]

6A. Given an unlabeled set of examples $\{x^{(1)}, \ldots, x^{(m)}\}$ the one-class SVM algorithm tries to find a direction w that maximally separates the data from the origin. Precisely, it solves the (primal) optimization problem:

$$egin{array}{ll} \min & rac{1}{2} w^T w \\ \mathrm{subject \ to} & w^T x^{(i)} \geq 1, \ i=1,\ldots,m \end{array}$$

A new test example x is labeled 1 if $w^Tx \ge 1$, and 0 otherwise. For the given primal optimization problem, write down the corresponding dual optimization problem. Simplify your answer as much as possible.

- 6B. Describe the method of constructing GLMs.
- 6C. Suppose $x, z \in \mathbb{R}^n$, and consider $K(x, z) = (x^T z)^2$. You know that $K(x, z) = \phi(x)^T \phi(z)$. Write feature map $\phi(x)$ for the given kernel. Here assume that n = 3.

[5+3+2]