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Instructions to candidates

o Answer any FIVE FULL questlons All quest:ons carry equa.l marks
e Missing data if any, may be sultably assumed.

1A. What do you understand by the term hypotheszs functzon” Derlve normal equatmn for
parameter # as per the LMS ‘algorithm. o : o

1B. For logistic regression; derive the relation for pa.rameter updatlon

1C. A gener&hzed linear model sssume that the response. va.rlable y (condltloned on z) is .
d1str1buted accordmg to a member of the exponentlal famﬂy

~ ply;m) = bly) exp (nTT(y) “ ().
Show that the Bernoulh drstnbutron is an example of exponential d1str1but10n
[5+3+2]
“2A. Suppose you are given a dataset {(z@,y®);i = 1,...,;m} consisting of m independent
examples, where {9 € R” are n-dimensional vectors, and ¢ € {0,1}. You will model
the joint distribution of (’.L', ) according to:
p(y) = (1 — ¢4V
. 1 . 1 T __:1 .
p(a:ly = ) = W exp ( - E(w — u-g) b (IIZ - ,uo))
p(-’:&'ly = ) (2 )n/glzll/g exp ( (ZB lul) bX (.’L‘ _ Ml))

Here, the parameters. of the model are ¢, E La and ,ul The log-hkehhood of the data is

gwen by
K PR .l(-g#?#‘():__f-”l, E lOg ]:[p(.fﬂ(?') ,y(z) d’a to, f, E)
) . z—l _ o
= log Hp(w“) I'y(“), po, 1, 5) (y( ; ¢)
) i=1"
By maximizing ! with respect to the four parameters, derlve the relation for ¢, pg, p41, and
. : :

P

" 9B. Frame the optimal margm cla,smﬁer as an optimization pria_,lem

2C. Bias and variance are the twin evils of machine learmng With appropriate dlagrams
explain the bias-variance trade off and behavior of the model.
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Suppose, you have a superwsed learning problem where the number of features n is very
_ ;large {n > m), but you suspect that thereis only a small number of features that are

“relevant” to the learnmg task. Explain various techniques for feature selection.

Suppose, you have an estimation problem in Whlch you have a training set {x(l) m(m)} .
- consisting of m 1ndependent variables. You wish to ﬁnd the parameters of & model p(..'c z)
“to the data, where the lrkehhood is gwen by

5(9) Z logp(:v 9)

= Zlog Zp(m z; 6)
=1

But the exphmt ﬁndmg the maximum hkehhood est1mates of parameter 9 may- be hard
Also, here z0’s are latent variable. For such a setting, the EM algorithm gives an eﬂic1ent
method for maximum likelihood estimation, Establish preliminary relation requlred for

applying EM algorithm as per the Jensen’s inequality: .

Given v and some § > 0, how large must m be before you can. guarantee that with

probability at least 1 — 4, tra,mmg error will be Wlthm ~ of generalization error? Assume ‘
= 2k exp( 27 m)

[5+3}2]

Ma.rginai' distributions of .Ga,uss1ans are themselves Ganssians, and as per the definition:

of the multlvarlate Gaudsian dlstrlbutmn, it is known that a:1|m2 ~ J\f (,u1|2, T13), where .

g = b+ T (%‘2 Mz)
El|2 - Ell - 2]_22 1221

Ina factor analysis model, assume a joint: distribution on (z,z) as follows

z ~ N(0,1)
x|z~ N(p+ Az, T)

where p € R", A € R™*, and the diagonal matrix ¥ & ]R”x” (k < mn). Workout the
expression for the log likelihood of the parameters I(y, A, 7). :

Let a sequence of examples (z(V,yM), (z@,y®), ..., (z(™, ™) be given. Suppose that
||z < D for sll 4, and further that there e}nsts a unit-length vector u such that
y® . (uTz®) > ~ for all examples in the sequence. Show that the total number of mistakes
that the perceptron algorithm makes on this sequence is at most (D /)2

What do you understand by the term mizture of Gaussians?

[5+3+2]

Consider a learning problem in which you have a finite hypothesis class 1 = {ha,.. hk}' '
' _conswtmg of k hypothesis. Show that if uniform convergerice occur, the genera.hzatlou

error of h is at most 2y worse than the best poss1b1e hypothesis in H.
What do you mean by a convex function? Why is it so lmportant in optmuzatwn theory?
The following questions require a true/false or a short answer.
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i) Let there be a bma.ry classification problem with continuous-valued features. What

will the_ decision boundary lock like if we model the two classes using separate co-
- - Variance matrices Yoand &7 - o _.
ii) Let any 2, 22, 2®) & RP be given (z® £ (@, zM £ 53 2@ £ 2®), Also let any
20, 2@ 26) € R be fixed. Then there exists a valid Mercer kernel X : RPxR? —» R
- such that for all 4, j €{1,2,3} we have K (9, 20y = (29)7219). True or False?

[5+3+2]

BA. Gi&enfan unlabeled set of examples {z,. . the one-class SVM algorithm tries to

6B:

find a direction w that meximally separates the data from the origin. Precisely, it solves

the (primal) optimization problem:

min — Ty
w 2 .
subject to w'z® >1, = 1,...,m

A new test example z is labeled 1 if W% 2 1, and 0 otherwise. For the given prima)
optimization problem, write down the corresponding dual optimization problem.. Simplify
your answer as much as possible. - . ' :

Describe the method of constructing GLMs.

' 6C. Suppose z,2 € R, and consider K (z,2) = (z72)%. You know that K (z,2) = ¢(z)T(2).
Write feature map ¢(z) for the given kernel. Here agsume thaf n — 3. _
[54+3+2]
"n:__:-‘y:&
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