| Reg. No. |
|----------|
|----------|



MANIPAL INSTITUTE OF TECHNOLOGY Manipal University



## SIXTH SEMESTER B. Tech. (E & C) DEGREE END SEMESTER EXAMINATION MAY/JUNE 2016 SUBJECT: ASIC DESIGN (ECE - 320)

## TIME: 3 HOURS MAX. MARKS: 50 Instructions to candidates Answer **ANY FIVE** full questions. Graph sheet will be provided. Missing data may be suitably assumed. Implement 0101 overlapping sequence detector using PLA. Use minimum hardware. 1A. 1B. Implement the F=a'cd+ b'cd+ab+bc' using ALTERA MAX structure having 3-wide OR Plane 1C. What is floor plan? Give an example of non-slicing floorplan. (5+3+2)Given the following netlist with six cells [L, M, N, O, P, Q] and six nets N<sub>1</sub>={L, N, O, Q}, N<sub>2</sub>={L, 2A. N, P}, N<sub>3</sub>={L, M, P}, N<sub>4</sub>={L, M, O, P}, N<sub>5</sub>={M, P, Q} and N<sub>6</sub>={N, Q} Find the linear ordering using linear ordering algorithm. 2B. Sketch a 2-input NOR gate with transistor widths chosen to achieve effective rise and fall resistances equal to a unit size inverter. Compute the rising and falling propagation delays of the NOR gate driving *h* identical NOR gates using the Elmore delay model. Assume that every source or drain has fully contacted diffusion when making your estimate of capacitance. 2C. A Cell Based ASIC is using AND gate as standard cell and two 2 to 4 decoder as fixed block. Implement a 4 to 16 decoder. (5+3+2)Perform a single pass of Fiduccia and Mattheyses algorithm on the circuit shown in FIG. 3A using 3A. *(bcde, afgh)* as the initial solution. Break ties in alphabetical order. The area constraint is set to [3, 5]. Briefly Explain the ASIC Design flow with neat diagram. 3B. 3C. A ring oscillator is constructed from an odd number of inverters, as shown in FIG. 3C Estimate the frequency of an N-stage ring oscillator. The logical effort and parasitic delay of the inverter are g = 1 and p=1 respectively. Find the maximum operating frequency of the oscillator. (5+3+2)4A. Write the Verilog code for 4-bit adder and its test-bench. **FIG. 4B** shows the placement P of blocks a-f and their pins, nets $N_1 = (a_1, b_1, d_2)$ , $N_2 = (c_1, d_1, f_1)$ 4B. and $N_3 = (e_1, f_2)$ . The weights of net N<sub>1</sub>, N<sub>2</sub>, and N<sub>3</sub> are 2, 4 and 1 respectively. Estimate the total weighted wirelength of *P* using the RMST model. 4C. What is placement?

(5+3+2)

| 5A. | Show that the diffusion capacitance of conventional $24 \lambda / 12 \lambda$ CMOS inverter is reduced by 50% after the layout folding. Draw the folded layout. Given that a unit size transistor with width =4 $\lambda$ offers the diffusion capacitance C. |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 5B. | Find the equivalence partition and the corresponding reduced machine for the state machine represented by <b>TABLE 5B</b> .                                                                                                                                   |  |  |
| 5C. | Explain the working of floating gate MOSFET.                                                                                                                                                                                                                  |  |  |
|     | (5+3+2)                                                                                                                                                                                                                                                       |  |  |
| 6A. | Find the longest path for the DAG graphs shown in <b>FIG 6A</b> .                                                                                                                                                                                             |  |  |
| 6B. | Write the Verilog test-bench for 3 input OR gate.                                                                                                                                                                                                             |  |  |
| 6C. | What is logical effort? Find the logical effort of 3-input NAND gate.                                                                                                                                                                                         |  |  |
|     | (5+3+2)                                                                                                                                                                                                                                                       |  |  |



FIG. 3A





| TABLE 5B |       |     |  |  |
|----------|-------|-----|--|--|
|          | NS, z |     |  |  |
| PS       | X=0   | X=1 |  |  |
| А        | B,0   | Е,0 |  |  |
| В        | Е,0   | D,0 |  |  |
| С        | D1    | A,0 |  |  |
| D        | C,1   | Е,0 |  |  |
| Е        | B,0   | D,0 |  |  |



FIG. 3C



FIG 6A.