Reg. No.		

Manipal Institute of Technology

(A Constituent Institute of Manipal University)

VI SEMESTER B.Tech. END SEMESTER EXAMINATION – MAY 2016

SUBJECT: INTRODUCTION TO DATA ANALYTICS [MCA 451]

16-05-2016

Time: 3 hours

Max. Marks: 50

Instructions to Candidates

- 1. Answer ANY FIVE FULL questions.
- 2. Missing data may be suitably assumed.
- 1A Explain the different types of data analysis tasks with suitable examples.
- 1B What is the role and responsibilities of a subject matter expert in data analysis projects?
- 1C Distinguish between dichotomous and nominal data variables using appropriate examples.

(5+3+2)

2A A training dataset consists of the following attributes and class label

Name	Age	Gender	Blood	Weight (kg)	Height (m)	Systolic blood pressure	Diastolic blood pressure	Temperature (°F)	Diabete
P. Lee	35	Female	A Rh ⁺	50	1.52	68	112	98,7	0
R. Jones	52	Male	O Rb	115	1.77	310	154	98.5	1.
1. Smith	45	Male	O Rh+	96	1.83	88	136	98.8	.0
A. Patel	70	Female	O Rb	41	1.55	76	125	98.6	0
M. Owen	24	Male	A Rb	79	1.82	65	105	98.7	0
S. Green	43	Male	O Rh	109	1.89	114	159	96.9	1
N. Cook	68	Male	A Rb	73	1.76	106	136	99,0	0
W. Hands	77	Female	O Rh	104	1.71	107	145	98.3	1
P. Rice	45	Female	O Rh*	.64	1.74	101	132	98.6	.0
E Marsh	28	Male	O Rh+	136	1.78	121	165	98.7	1

 Create a new attribute "NormWeight" by normalizing the "Weight (kg)" attribute into the range of 0 to 1.

[MCA 451]

Page 1 of 4

- Create a new attribute "AgeBins" by binning the Age attribute into 3 categories;
 young (<30), middleAged (>= 30 and < 45) and old (>= 45 and above).
- iii Create an aggregated column called BMI based on the formula

$$BMI = \frac{Weight (kg)}{Height (m)^2}$$

- iv. Segment the original data set into 2 data sets based on the variable Gender.
- 2B An insurance company wanted to understand the time to process an insurance claim. They timed a random sample of 45 claims and determined that it took on average 28 minutes per claim and the standard deviation was calculated to be 3. With a confidence level of 95% (Zc=1.96), what is the confidence interval?.
- 2C How is a Contingency table different from a Summary table? Give examples.

$$(5+3+2)$$

3A Consider the transactional data set given below. Let minimum support be 60 %. Find all the frequent item sets only, using the Apriori algorithm.

TransactionID	Items purchased ·
100	Bread, Cheese, Eggs, Juice
200	Bread, Cheese, Juice
300	Bread, Milk, Yogurt
400	Bread, Juice, Milk
500	Cheese, Juice, Milk

- 3B What is the need for performing Correlation Analysis on association rules? Illustrate with an example.
- 3C How does the partition algorithm improve on the efficiency of the Apriori algorithm?

(5+3+2)

4A Consider the following distance matrix and perform agglomerative clustering on the 5 data points: Visualize using a dendrogram.

0.10	0.10	0.41	0.55	0.35
10				
	0	0.64	0.47	0.98
.41	0.64	0	0.44	0.85
1.55	0.47	0.44	0	0.76
1.35	0.98	0.85	0.76	0
	0.00	11770	100 300	WE - 100 STEELS

- 4B Given two data points X= (20, 3, 40, 15) and Y= (14, 0, 46, 8). Represent them as a distance matrix using
 - i. Euclidean distance between the data points
 - ii. Manhattan distance between the data points.
 - iii. Minkowski distance between the data points using q = 3.
- 4C What are the disadvantages of the k-means clustering technique?

(5+3+2)

- 5A The following table shows the relationship between the amount of fertilizer used and the Height of a plant.
 - Calculate a simple linear regression equation using Fertilizer as the descriptor and Height as the response.
 - ii. Predict the height when fertilizer is 9.5.

Fertilizer	10	5	12	18	14	7	15	13	6	8	9	11	16	20	17
Height	-0.7	0.4	0.8	1.4	1.1	0.6	1.3	1.1	0.6	0.7	0.7	0.9	1.3	1.5	1.3

- 5B Differentiate between the following, with suitable examples.
 - i. Classification tree vs. Regression tree
 - -ii. Eager vs. lazy learners
 - iii. Sensitivity vs. Specificity
- 5C How do hyper planes perform classification in the Support vector machine (SVM) classifier?

6A Consider the following data set for a binary class problem. Calculate the information gain when splitting on attribute A and on attribute B. Which attribute would be selected for the root of the decision tree?

A	В	Class Label
T	F	+
T	T	+
T	T	+
T	F	-
T	Т	+
F	F	
F	F	
F	F	
T	T	* .
T	F	

- 6B What strategies could be adopted for separation of test and training set for classifiers?
- 6C Describe any measure which can indicate the accuracy of prediction algorithms.

(5+3+2)