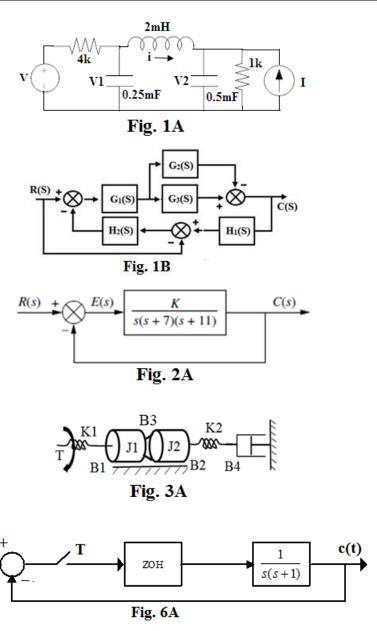
Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

SIXTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION MAY/JUNE 2016

SUBJECT: LINEAR AND DIGITAL CONTROL SYSTEMS (ECE - 306)

TIME: 3 HOURS MAX. MARKS: 50


Instructions to candidates

- Answer **ANY FIVE** full questions.
- Missing data may be suitably assumed
- Graph sheets will be issued on request

1A.	Find the state variable matrix equation for the circuit shown in Fig. 1A. Let the state variables are				
	$x_1 = v_1, x_2 = v_2 \text{ and } x_3 = i$				
1B.	For the block diagram shown in Fig. 1B, find the CLTF using block diagram reduction technique.				
1C.	Derive for controller function using deadbeat algorithm.				
	(5+3+2)				
2A.	Using RH Criteria find the range of gain K for the system shown in Fig. 2A that will cause the				
	system to be stable,unstable and marginally stable. Also find the frequency of oscillation for				
	marginal stability.				
2B.	A single loop feedback system have path gains $G(s) = \frac{2}{s+1}$ and $H(s) = \frac{1}{s+10}$. Find its response for				
	unit step input. What is the steady state response of the system for the same input?				
2C.	State and prove properties of state transition matrix.				
	(5+3+2)				
3A.	For the mechanical system shown in Fig. 3A, equivalent T-V analogous circuit with the help of all				
	necessary equations.				
3B.	Write an expression for response of a second order system for unit step input and hence derive for				
	maximum overshoot.				
3C.	Explain Controllability and Observability of a system.				
	(5+3+2)				
4A.	For the unity feedback system represented as $G(s) = \frac{(s+1)}{s^2(s+10)}$, draw the Root Locus and comment				
	on stability.				
4B.	For system equation determine characteristic equation, Eigen values, State transition matrix and transfer				
	function Y(s)/U(s)				
	$\dot{\mathbf{X}} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u} \text{ and } \mathbf{Y} = \begin{bmatrix} 0 \ 1 \end{bmatrix} \mathbf{X}$				

ECE - 306 Page 1 of 2

	(5+5)			
5A.	Derive frequency response specifications of a second order prototype system. Find the magnitude			
	and phase responses for the system with $G(s) = \frac{10(s+3)}{s(s+5)(s+10)}$ at 500 rad/sec.			
5B.	For a unity feedback system with $G(s) = \frac{1}{S(S+1)}$ followed by ZOH design a controller D(z) so that the			
	response to the unit step is $c(n)=0,0.5,1,1,1$ Given sampling period $T=1$ second.			
	(5+5)			
6A.	For the Discrete control system shown in Fig. 6A, derive the closed loop pulse transfer function for			
	sampling period $T=1$ and $T=2$ seconds.			
6B.	Draw the Nyquist plot $G(s) = \frac{1}{s(s+1)(s+2)}$ and find gain margin.			
	(5+5)			

ECE - 306 Page 2 of 2