MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

SIXTH SEMESTER B.Tech. (I & CE) DEGREE END SEMESTER EXAMINATION May/June 2016 SUBJECT: DIGITAL SIGNAL PROCESSING (ICE - 306)

TIME: 3 HOURS		MAX. MARKS: 50	
Instructions to candidates			
	• Answer ANY FIVE full questions.		
	Missing data may be suitably assumed.		
1 .			
IA.	Determine even and odd part of signal $x(n) = \{2, -2, 6, -2\}$.		
1 B .	Define any four types of discrete time systems with an example for each.		
1C.	Test the following systems for linearity. i) $y(n)=x(n)-2x(n-1)$ ii) $y(n)=nx^2(n)$.	(2 + 4 + 4)	
		(2+4+4)	
2A.	Determine the convolution sum of two sequences $x(n) = \{3,2,1,2\}$ and $h(n) =$	{1,2,1,2}.	
2B.	Find the output $y(n)$ of a filter whose impulse response is $h(n)=\{1,1,1\}$ and $x(n)=\{3,-1,0,1,3,2,0,1,2,1\}$ using overlap-add method.	input signal	
2C.	Test the stability of LTI system with $h(n) = 0.3^n u(n) + 2^n u(n)$.		
		(3+5+2)	
3A.	State and explain the following properties of z-transform,i) Time reversal ii) Convolution theorem.	(- , ,	
3B.	Determine the inverse z-transform of		
	$X(Z) = \frac{1}{1 - 0.8z^{-1} + 0.12z^{-2}} \qquad if \ ROC \ is, z > 0.6$		
3C.	Compute the 4-point DFT of the sequence $x(n) = \{0,1,2,3\}$. Sketch the spectrum	e magnitude and phase	
	spectrum.	(2+4+4)	
4A.	An 8-point sequence is given by $x(n) = \{2, 2, 2, 2, 1, 1, 1, 1\}$. Compute 8-point DIT FFT.	DFT of x(n) using radix-2	
4B	Bring out the difference between analog and digital filters.		
4C	Briefly explain the impulse invariant and bilinear transformation.		
		(5+2+3)	
5A.	Design the Butterworth IIR lowpass filter using bilinear transformation satisfy the following specification. $0.6 \le H(e^{j\omega}) \le 1.0$; for $0 \le \omega \le 0.35\pi$	by taking T=0.1sec, to	
	$ H(e^{j\omega}) \le 0.1$; for $0.7\pi \le \omega \le \pi$		
5B.	Obtain the direct form I and direct form II realization for following system $H(z) = \frac{1 - a \cos \omega_0 z^{-1}}{1 - a \cos \omega_0 z^{-1}}$		
	$1 - 2a \cos \omega_0 z^{-1} + a^2 z^{-2}$		
		(6+4)	

- 6A. Design the linear phase FIR lowpass filter using rectangular window by taking 7 samples of window sequence and with a cutoff frequency of $\omega_c=0.2\pi$ rad/sample.
- 6B. Write a short note on i) Biomedical signal processing ii) Histogram equalization

(5+5)
