Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY

Manipal University, Manipal – 576 104

VI SEM. B.Tech. MECHATRONICS ENGG. DEGREE EXAMINATIONS MAY 2016

SUBJECT: ELECTRONIC MEASUREMENTS AND INSTRUMENTATION (ICE 330) REVISED CREDIT SYSTEM

Time: 3 Hours.

MAX.MARKS: 50

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL questions.
- ✤ All calculations are to be sh
- ✤ own.
- ✤ All sketches should be neat and labelled clearly.
- 1A. The following measurements are made using a PMMC instrument which has a full scale (04) deflection of $90^{\circ} = 100$ scale divisions with a current of 1mA. The period of free oscillations is 0.55s. In order to measure the spring constant, a small weight having a gravitational force of 98.1×10^{-6} N is placed at a distance of 100mm from the horizontal axis of rotation with the horizontal pointer acting as a lever arm; the resulting deflection being 35 divisions. Value of flux density in the air gap measured is 0.24 Wb/m². The length of the coil is 15mm and the average diameter of the coil is 14mm. From the above data, calculate the following:

(i) Spring Constant (ii) Moment of Inertia (iii) Number of turns

- **1B.** With a neat general block diagram, explain the controls of a CRO. **(05)**
- **1C.** What are the major limitations of a Wheatstone Bridge with respect to their range of **(01)** measurement?
- 2A. Vacuum pressure measurements often rely on inferential methods that measure pressure (04) indirectly using some pressure dependent parameters. Identify a suitable pressure gauge that measures pressure by using the property of thermal conductivity. Draw a suitable diagram and explain the working.

- **2B.** The focusing system in a CRT is usually referred to as an 'electron lens'. Briefly **(03)** describe the electrostatic focusing arrangement with necessary equations and diagrams to support the above statement.
- **2C.** Identify and explain a suitable technique for the measurement of high resistances (1M Ω **(03)** and above). What is the advantage of Varley's loop test over Murray's loop test?
- **3A.** With a neat circuit diagram explain the construction and derive the equations for balance **(05)** for an Anderson's bridge.
- **3B.** Thermistors are used for a wide variety of applications apart from temperature **(03)** measurement. Explain the current-time characteristics of a thermistor with a neat diagram and state a suitable application for thermistor based on this property.
- 3C. Develop the characteristic shape of the Lissajous patterns for two sinusoidal outputs that (02) have the same amplitude but with following phase difference:
 (i) 270° (ii) 45° (iii) 180° (iv) 300°

4A.

Using the following values of resistance versus temperature for an RTD, find the linear and quadratic approximations of resistance between 80°C and 100°C.

Т℃	60°C	65°C	70°C	75°C	80°C	85°C	90°C	95°C	100°C	105°C
RΩ	435	443	452	460	468	476	484	492	500	508

- **4B.** In the smelter industry, measurement and control of temperatures of metallurgical **(03)** furnaces is a crucial process. Identify a suitable non-contact temperature sensor for this operation and describe its working with a neat diagram.
- 4C. Three resistors have the following ratings: $R_1 = 200\Omega \pm 5\%$; $R_2 = 100\Omega \pm 5\%$; (03) $R_3 = 50\Omega \pm 5\%$. Determine the magnitude of resultant resistance and the limiting errors in percentage and in ohm if above resistances are connected in (i) series (ii) parallel.
- 5A. Why is cold junction compensation necessary during measurement of temperature using (04) a thermocouple? With neat diagrams, explain one software and one hardware type of compensation technique for cold junction compensation of a thermocouple
- 5B. A moving coil ammeter has a fixed shunt of 0.02Ω. With a coil resistance of R=1000Ω (03) and a potential difference of 500mV across it, full scale deflection is obtained.
 (i) To what shunt current does this correspond?
 (ii) Calculate R to give full scale deflection when shunted current I is 75A.
 (iii) With what value of R is 40% deflection obtained when I = 100A?
- **5C.** A Wheatstone bridge is connected in Varley loop test as shown below. When the switch (03) is in position 1, bridge is balanced with $R_1 = 1000\Omega$, $R_2 = 2000\Omega$, $R_3 = 100\Omega$. When

(ICE - 330)

Page 2 of 3

(04)

the switch is in position 2, bridge is balanced with $R_1 = 1000\Omega$, $R_2 = 2000\Omega$, $R_3 = 99\Omega$. If the resistance of earthed wire is 0.15km, how many metres away from the bridge has the ground fault occurred?

- 6A. A pressure sensor typically used in the range $220 \frac{kN}{m^2} 300 \frac{kN}{m^2}$ is to be (04) calibrated. Identify a standard suitable device for calibrating this pressure sensor and explain its working and construction in detail using a neat diagram.
- **6B.** An A.C. bridge consists of the following components: Arm AB: An imperfect capacitor C_1 with an equivalent series resistance r_1 Arm BC: A non-inductive resistance R_3 Arm CD: A non-inductive resistance R_4 Arm DA: An imperfect capacitor C_2 with an equivalent series resistance r_2 in series with a resistance R_2 At balance: $R_2 = 4.8\Omega$, $R_3 = 2000 \Omega$, $R_4 = 2850 \Omega$, $C_2 = 0.5\mu F$, $r_2 = 0.4\Omega$ A supply of 450 *Hz* is placed between AC. Draw the circuit diagram, write the balance conditions and calculate the value unknown parameters in arm AB. Also calculate dissipating factor for the unknown capacitor
- 6C. How does A.C. sensitivity of rectifier type of instruments compare with D.C. sensitivity? (02) Explain the reason for the fact that a voltmeter employing a 50μ A basic meter is rated at $20k\Omega/V$ on D.C. measurements and only $5k\Omega/V$ on A.C. measurements.