

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

A Constituent Institution of Manipal University

## FIRST SEMESTER B.TECH. (COMMON TO ALL BRANCHES) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: ENGINEERING MATHEMATICS-I [MAT 1101]

## REVISED CREDIT SYSTEM (24/11/2016)

Time: 3 Hours

MAX. MARKS: 50

## Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

| 1A.         | Use Newton Raphson method to find a real root of $xsinx + cosx = 0$<br>near $x = \pi$ . Carry out three iterations up to four decimal places of accuracy.                                  |  |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1 <b>B.</b> | Solve $(4xy + 3y^2 - x)dx + (x^2 + 2xy)dy = 0.$                                                                                                                                            |  |  |  |  |  |  |  |
| 1C.         | Solve $\frac{dx}{dt} + 5x - 2y = t$ , $\frac{dy}{dt} + 2x + y = 0$ given that $x = y = 0$<br>when $t = 0$ .                                                                                |  |  |  |  |  |  |  |
| 2A.         | From the following data estimate the number of students who have got<br>marks more than 40 but less than 45.Marks30-4040-5050-6060-7070-80Number of students3142513531                     |  |  |  |  |  |  |  |
| 2B.         | Given the set of tabulated points $(-1,3)$ , $(0,-6)$ , $(3,39)$ , $(6,822)$ and $(7,1611)$ satisfying the function $y = f(x)$ , compute $f(4)$ using Newton's divided difference formula. |  |  |  |  |  |  |  |
| 2C.         | Solve the following equations by Gauss elimination method:<br>5x + y + z + w = 4 $x + 7y + z + w = 12$ $x + y + 6z + w = -5$ $x + y + z + 4w = -6$                                         |  |  |  |  |  |  |  |

MAT 1101

| Reg. | No. |
|------|-----|
|      |     |



MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

| 1.5          | PIRED BY LA A Constituent Institu                                                                                                                                                   | ution of Manipal Unive | rsity                           |                                    |                                     |                    |             |           |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------|------------------------------------|-------------------------------------|--------------------|-------------|-----------|--|--|
| 3A.          | From the form $\frac{x}{y}$                                                                                                                                                         | llowing t<br>1.0<br>0  | able find $ \frac{1.2}{0.128} $ | f '(2.0) an<br><u>1.4</u><br>0.544 | nd f "(1.0)<br><u> 1.6</u><br>1.296 | ).<br>1.8<br>2.432 | 2.0<br>4.00 | <b>3M</b> |  |  |
| 3B.          | Find all the eigen values and any one eigen vector of $\begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$ .                                                     |                        |                                 |                                    |                                     |                    |             |           |  |  |
| 3C.          | Solve $(D^2 + 4)y = x^2 + \cos 2x + 2^{-x}$ .                                                                                                                                       |                        |                                 |                                    |                                     |                    |             |           |  |  |
| <b>4</b> A.  | Using Gram-Schmidt process construct an orthonormal set of the basis vectors from the given set of vectors $(0,1,1),(1,0,1),(1,1,1)$ .                                              |                        |                                 |                                    |                                     |                    |             |           |  |  |
| 4 <b>B</b> . | Use Simpson's $(3/8)^{\text{th}}$ rule to evaluate $\int_0^1 e^{-x^2} dx$ by taking seven ordinates.                                                                                |                        |                                 |                                    |                                     |                    |             |           |  |  |
| 4C.          | Using modified Euler's method, find $y(0.2)$ and $y(0.4)$ given $y' = y + e^x$ , $y(0) = 0$ with $h = 0.2$ .                                                                        |                        |                                 |                                    |                                     |                    |             |           |  |  |
| 5A.          | Solve: $(1+x)^2 \frac{d^2 y}{dx^2} + (1+x) \frac{dy}{dx} + y = 2\sin[\log(1+x)].$                                                                                                   |                        |                                 |                                    |                                     |                    |             |           |  |  |
| 5B.          | Solve the following system by Gauss-Seidel iteration method $3x + 20y - z = -18, 20x + y - 2z = 17, 2x - 3y + 20z = 25$ . Carry out five iterations correct to four decimal places. |                        |                                 |                                    |                                     |                    |             |           |  |  |
| 5C.          | Prove that any set of n linearly independent vectors of vector space $E^n$ forms a basis of $E^n$ .                                                                                 |                        |                                 |                                    |                                     |                    |             |           |  |  |