Υ.															
	INTF	RNAT	IONAL	CENTRE	FOR	AP	PLI	ED	SCI	EN	CES				
ALL STREET				Maninal U	nivers	itv)						,			
	I SEMES	TFR R	S DEC		MIN	ΔΤΙ	ON	_ N	ov	/ D	FC	201	16		
i lu	SUBJECT	: CHEM	ICAL EN	GINEERIN(GTH	ERM		VNA		- 7 D CS (([122	10 2)		
	Sebuler		(E	BRANCH: CI	HEMI	CAL))						''		
			Wed	nesday, 14 D	ecemt	oer 2	016								
Time:	3 Hours									Μ	lax. I	Marl	ks: 10	00	
~	Answer A	NY FIVI	E FULL (Juestions.											
\checkmark	Missing da	ata, if an	y, may be	suitably assu	umed	and	the s	same	pro	perly	y ind	icate	ed.		
1A.	What are the 4 basic thermodynamic processes?. Derive an expression for the work														
	done in the case of an ideal gas undergoing (i) isobaric process (ii) isentropic														
	process														
1 B .	Explain th	ne followi	ng by giv	ing examples	and u	sing a	a PV	diag	ram:						
	(i)	Propert	ies, state,	path and proc	ess										
	(ii)	State an	nd Path fu	nctions											1.0.
	(iii)	Revers	ible and Ir	reversible pro	ocess									(10+	·10)
2A.	Derive the	e modifie	d equatio	ns for interna	l ener	gy ar	nd er	nthal	py ai	nd ap	oply	them	to		
	an ideal g	as.	-					-		-					
A D	XX 71 4 *		1.1.4 C	0 11/1	•,	1.		0.0		4	.1.		C		
2B.	what is c	:ompressi	billity fact	or? what are		ppiic		is? C	nve	the (Julii	les o	1 a		
	compressi	ionity fac	tor chart.	now will you	gener	anse	uns	char	ι:					(10+	10)
3	Two liquids P and O form an azeotrope containing 89.4 mol % P at 101.3kPa								сРа						
	pressure. At the azeotropic temperature of 351.4 K, the vapour pressures of P and O									10					
	are 100kPa, 44kPa respectively. Construct the VLE (x-y) diagram. List the								the						
	assumptions you make.									A C -	- -				
		·	-											20 N	1arks
4A.	Explain: I	Redlich-K	wong equ	ation of state	•										

Reg. No.

- **4B.** Define: Fugacity coefficient and Activity coefficient. What are their applications in VLE and chemical equilibrium calculations? Explain
- 4C. Distinguish: Ideal gas and Ideal liquid solution. Explain the various models used for ideal gas mixture and ideal solution giving the relevant equations and represent (4+6+10)them graphically.

SPIRED BY

5A.

From the data on activity coefficient versus mole fraction for the system acetone (1) –dichloroethylene (2) given below, check their thermodynamic consistency.

X1	0.023	0.053	0.357	0.516	0.883	0.979
γ1	0.608	0.711	0.854	0.917	0.987	1.0
γ2	0.993	0.974	0.934	0.891	0.781	0.694

- **5B.** Explain: Redlich-Kister equation.
- **5C.** Draw the T-x-y diagram for partially miscible system and label the phase fields. (12+3+5)
- **6A** Estimate the fugacity of gaseous propane at 12 bar and 310K using the following data:
 - (i) Assuming ideal gas behaviour

(ii) Using the following PVT data:									
P(bar)	1.7	3.4	6.8	10.2	11.7	13.6			
V(m3/kg)	0.3313	0.1609	0.0754	0.0468	0.0382	0.021			

- **6B.** Give the complete definition of fugacity in case of (i) a pure component i (ii) component i in solution (iii) solution as a whole
- **7A.** Explain: van't Hoff's isotherm, van't Hoff's isobar
- **7B.** For the reaction : $SO_2(g) + \frac{1}{2} O_2(g) \rightarrow SO_3(g)$ in equilibrium at 775K, what pressure is required for a 90% conversion of SO₂, if the initial mixture is equimolar in the reactants. Free energy of the reaction at 775K is (- 2.8626 x 10⁴ J). Assume ideal gas behaviour.
- **8A.** Derive the summation form of Gibbs-Duhem equation from the fundamentals for a binary system of components 1 and 2. Represent the equation in terms of various thermodynamic functions. What are applications and limitations of these equations?
- **8B.** Explain: Molar Property change of mixing, Molar excess properties and Molar residual properties

(14+6)

(14+6)

(8+12)

##