

INTERNATIONAL CENTRE FOR APPLIED SCIENCES

(Manipal University)

II SEMESTER B.S. DEGREE EXAMINATION – NOV. / DEC.2016

SUBJECT: MATHEMATICS -II (MA 121) (BRANCH: COMMEN TO ALL) Monday, 5 December 2016

Time: 3 Hours Max. Marks: 100

Answer ANY FIVE full Questions.

Z Draw diagrams and equations whenever necessary.

1A. If
$$u = \cos ec^{-1} \left[\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}} \right]^{1/2}$$
, prove that $x^2 u_{xx} + 2xyu_{xy} + y^2 u_{yy} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^2 u}{12} \right)$.

1B. Evaluate
$$\int_{0}^{1} \int_{0}^{1-x} e^{y/x+y} dxdy$$
, using the transformation $x + y = u$, $y = uv$.

1C. Prove that any orthogonal set of nonzero vectors is linearly independent.

(8+8+4)

2A. Verify Green's theorem for
$$\int_C (3x - 8y^2) dx + (4y - 6xy) dy$$
, where C is the boundary of the region bounded by $x = 0$, $y = 0$ and $x + y = 1$.

2B. (i). Find the area common to the circles r = a and $r = 2a\cos\theta$ using double integrals.

(ii). Changing to polar coordinates, evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} y \sqrt{x^{2}+y^{2}} dx dy.$$

2C. Evaluate
$$\int_{0}^{\infty} \sqrt{x} e^{-x^{3}} dx.$$

(8+8+4)

3A. (i). If
$$x^x y^y z^z = c$$
, show that at $x = y = z$, $\frac{\partial^2 z}{\partial x \partial y} = \frac{-1}{x \log(ex)}$.

(ii). If
$$H = f(y-z, z-x, x-y)$$
, prove that $\frac{\partial H}{\partial x} + \frac{\partial H}{\partial y} + \frac{\partial H}{\partial z} = 0$.

MA 121 Page 1 of 3

3B. Prove that
$$\Gamma(m)$$
 $\Gamma\left(m + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}}$ $\Gamma(2m)$.

3C. Using Gauss Jordan method, find the inverse of the matrix
$$A = \begin{bmatrix} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$
.

(8+8+4)

- 4A. (i). Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
 - (ii). Find the directional derivative of $\phi = x^2 + y^2 + xz$ at the point (2, -1, 3) in the direction of A = i + 2j + k.
- 4B. Evaluate $\int_{0}^{\infty} dx \int_{0}^{\infty} dy \int_{0}^{\infty} \frac{dz}{\left(1+x^2+y^2+z^2\right)^2}$ using spherical polar coordinates.
- 4C. If the kinetic energy T is given by $T = \frac{1}{2}mv^2$, find approximately the change in T as m changes from 49 to 49.5 and v from 1600 to 1590.

(8+8+4)

- 5A. (i). Using divergence theorem evaluate $\iint_S \vec{A} \cdot n \, dS$, where $\vec{A} = 4xi 2y^2j + z^2k$ and S is the surface bounded by $x^2 + y^2 = 4$, z = 0 and z = 3.
 - (ii). Show that $\vec{F} = (6xy + z^3)i + (3x^2 z)j + (3xz^2 y)k$ is irrotational.
- 5B. (i). Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta \times \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin \theta}} d\theta = \pi.$
 - (ii). Evaluate: $\int_{0}^{1} (x \log x)^{4} dx$

MA 121

5C. At the distance of 50m from the foot of the tower of elevation at the top is 30° . If the possible error in measuring the distance and elevation are 2cm and 0.05° . Find approximate error in calculating height.

(8+8+4)

- 6A. Show that the rectangular solid of maximum volume can be inscribed in a sphere is a cube.
- 6B. Let $S = \{a_1, a_2, a_3\}$ be a basis for R^3 where $a_1 = (1, 1, 1), \ a_1 = (-1, 0, -1),$ $a_1 = (-1, 2, 3).$ Use Gram Schmidt process to transform S to an orthonormal basis of R^3 .
- 6C. Evaluate $\iint y \ dxdy$ over the area bounded by $y = x^2$ and x + y = 2.

(8+8+4)

- 7A. Find the maximum and minimum values of $f(x, y) = x^3 + 3xy^2 15x^2 15y^2 + 72x$.
- 7B. Test for consistency and solve the following system of equations by Gauss-Elimination method.

$$3x + 3y + 2z = 1$$

$$x + 2y = 4$$

$$10y + 3z = -2$$

$$2x - 3y - z = 5$$

7C. Find the work done in moving a particle in the force field $\vec{F} = 3x^2i + (2xz - y)j + zk$, along the straight line from (0,0,0) to (2,1,3).

(8+8+4)

- 8A. The temperature T at any point (x, y, z) in space is $T = 400xyz^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.
- 8B. Find the volume inside the cone $x^2 + y^2 = z^2$ bounded by the sphere $x^2 + y^2 + z^2 = a^2$.

8C. If
$$v = r^m$$
 where $r^2 = x^2 + y^2 + z^2$, show that $v_{xx} + v_{yy} + v_{zz} = m(m+1)r^{m-2}$.

(8+8+4)

MA 121 Page 3 of 3