

Wednesday, 30 November 2016

Reg.No.

Time: 3 Hours

Max. Marks: 100

- ✓ Answer ANY FIVE full Questions.
- ✓ Missing data, if any, may be suitably assumed
- 1A. Let $\Sigma = \{a, b\} L_1 = \{a, aba, abba\}$ and $L_2 = \{\lambda, ab, ba, aabb, abba, abab\}$. Compute, L_1^R , L_1L_2 , $L_2 L_1$ and L_1^2 .
- 1B. Let $\Sigma = \{a, b\}$, construct DFA for the following languages:
 - (i) $L = \{ w_1 a w_2 b w_3 : w_1, w_2, w_3 \in \{a, b\}^* \}$ (with exactly 3 states) and which of the strings **bbabba**, & **bbbbba** are accepted by the DFA.
 - (ii) $L = \{ w : n_a(w) \mod 3 > 1 \}$ (with exactly three states) and which of the strings **babab**, & **bababa** are accepted by the DFA.
- 1C. Which of the following strings **01001**, & **10010** are accepted by the following NFA in Fig. 1C.

Fig. 1C

1D. Convert the NFA in Fig. 1D into an equivalent DFA.

(6+6+2+6)

- 2A.Find the regular expressions for the following languages
 - (i) $L = \{ a^n b^m : n \ge 4, m \le 3 \}$
 - (ii) L = { $a^n b^m : n < 4, m \le 3$ }
- 2B. Find the NFA that accepts the language L ((a+b)* b (a+bb)*).
- 2C. Minimize the DFA in Fig. 2C.

2D. Find the regular expression for the language accepted by the following NFA in Fig 2D.

$$(6+2+6+6)$$

- 3A. Find a right- and left-linear grammars for the language L (aab(ab)*). Also derive the string **aabab** using right- and left-linear grammars.
- 3B. If $L_1 = \{a^nb^m : n \ge 1, m \ge 0\} \cup \{ba\}$ and $L_2 = \{b^m : m \ge 1\}$. Find DFA for L_1/L_2 and hence find L_1/L_2 .
- 3C. Show that the language $L = \{ a^n b^k c^{n+k} : n \ge 0, k \ge 0 \}$ is not regular.

(6+6+8)

- 4A. Find context-free grammar for the following languages (with $n \ge 0$, $m \ge 0$). (i) L = { $a^n b^m : n \le m + 3$ } and derive the string **aaaab**
 - (i) $L = \{a^{-}b^{-}: n \le m + 3\}$ and derive the string **aaaab**

(ii) $L = \{ \ w \in \ \{a, b\}^* : n_a(w) = n_b(w) \}$ and derive the string bbaaba

- 4B. Consider the CFG:
 - $S \longrightarrow SS + |SS^*| a$ and the string $aa + a^*$
 - (i) Give a leftmost derivation for the string.
 - (ii) Give a rightmost derivation for the string.
 - (iii) Give the leftmost derivation tree for the string
 - (iv) Is the grammar ambiguous?

4C. Eliminate all λ -productions, unit productions and useless productions from the grammar $S \longrightarrow ala \Lambda |B|C$

$$A \longrightarrow aB|\lambda$$

$$B \longrightarrow Aa$$

$$C \longrightarrow cCD$$

$$D \longrightarrow ddd$$

What language does this grammar generate?

5A.Convert the grammar into CNF

 $S \rightarrow AB|aB$

 $A \longrightarrow aab \lambda$

B → bbÅ

5B.Construct the NPDA with transition diagram with exactly three states for the language $L = \{ ww^R : w \in \{a, b\}^* \}$

Show that the string **abba** will be accepted while the string **abb** will be rejected.

5C. Construct NPDA with transition diagram with exactly three states for the grammar.

 $S \rightarrow aSbb|a$

Show the acceptance of the string **aabb**.

(6+8+6)

(8+4+8)

6A. Show that $L = \{a^n b^{2n}: n \ge 0\}$ is a deterministic CFL. Show the acceptance of the string **aabbbb**

6B. Show that $L = \{ww: w \in \{a, b\}^*\}$ is not context-free.

6C. Show that $L = \{w \in \{a, b\}^* : n_a(w) = n_b(w)\}$ is not linear.

(6+8+6)

7A. Design a TM with transition diagram with five states that accepts following language. $L = \{ a^{n}b^{n} : n \ge 1 \}$

Show that the string **aabb** will be accepted.

7B. With neat diagram explain multitape TM and multidimensional TM

(12+8)

- 8A. With neat diagram explain Chomsky Hierarchy for formal languages.
- 8B. Let A = {001, 0011, 11, 101} and B = {01, 111, 111, 010} Does the pair (A, B) have a PC-solution? Does it have an MPC-solution?
- 8C. Define the following with an example.
 - (i) Unrestricted grammar (ii) Context-sensitive grammar
 - (iii) Recursive enumerable language

(8+6+6)

##