

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

III SEMESTER B.TECH. (Mech/ IP/Auto/Aero/MT) END SEMESTER EXAMINATION, NOV/DEC 2016

SUBJECT: ENGINEERING MATHEMATICS III MAT 2101

23/11/2016

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	Solve $y'' + xy = 1$ Subjected to the conditions $y(0) = 0, y'(1) = 1$ by taking $h = 0.5$									
1B.	Solve $x^2y'' + xy' + (x^2 - 3)y = 0$ Subjected to the conditions $y(1) = 0$, $y(2) = 2$ by taking h = 0.25.									
1C.	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, $0 < x < 1$, $t > 0$ subjected to the conditions $u(x, 0) = 100(x - x^2)$, $u(0, t) = u(1, t) = 0$. Compute u for one time step with h = 0.25 using Crank Nicolson's method									
2A.	Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ $0 < x < 1$, $t > 0$ with $u(x, 0) = 100(x - x^2)$, $\frac{\partial u}{\partial t}(x, 0) = 0$, $u(0, t) = u(1, t) = 0$ Choosing h = 0.25 for four time steps									
2B.	Obtain the Fourier series for $f(x) = \begin{cases} 1 + \frac{2x}{\pi}; & -\pi \le x \le 0\\ 1 - \frac{2x}{\pi}; & 0 \le x \le \pi \end{cases}$, Given that $f(x + 2\pi) = f(x)$.									
2C.	Obtain t given in x ^o y	Obtain the first three coefficients in the Fourier cosine series for y, where y is given in the below table. x^o 060120180240300y4815762								
3A.	Determine whether $\vec{F} = (x + 2y + 4z)\hat{\imath} + (2x - 3y - z)\hat{\jmath} + (4x - y + 2z)\hat{k}$ is conservative? If so find scalar potential.									

		Reg. No.											
MANIPAL INSTITUTE OF TECHNOLOGY													
3B.	From the Fourier integral show that $\int_0^\infty \frac{s \sin sx}{1+s^2} ds = \frac{\pi}{2}e^{-x}$ (x > 0)										03		
3C.	Find the Fourier transform of $f(x) = \begin{cases} 1 - x , & \text{for } x < 1 \\ 0, & \text{for } x < 1 \end{cases}$ and deduce that $\int_0^\infty \left(\frac{\sin t}{t}\right)^4 dt = \frac{\pi}{3}.$										03		
4A.	Derive the one dimensional wave equation with suitable assumptions.										04		
4B.	Use Gauss divergence theorem to evaluate $\iint_{s} \vec{f} \cdot n ds$, where $\vec{f} = 4x i - 2y^2 j + z^2 k$ and S is the surface bounding the region $x^2 + y^2 = 4$, $z = 0$ and $z = 3$.									,	03		
4C.	Given $\vec{A} = (yz + 2x)\hat{i} + xz\hat{j} + (xy + 2z)\hat{k}$. Evaluate $\int \vec{A} \cdot d\vec{r}$ along the curve $x^2 + y^2 = 1 \& z = 1$ in the positive direction of $(0, 1, 1)$ to $(1, 0, 1)$										03		
5A.	Solve the partial differential equation $U_{xx} + 2U_{xy} + U_{yy} = 0$ using the transformation $v = x, z = x - y$									04			
5B.	Verify Green's theorem for $\oint_c (3x^2 - 8y^2)dx + (4y - 6xy)dy$ Where C is the boundary of the region bounded by $x = 0$, $y = 0$ and $x + y = 1$.								,	03			
5C.	Let $\mathbf{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}$ and $(\nabla \varphi) \cdot \mathbf{A} + \varphi (\nabla \cdot \mathbf{A}).$ Hence show that $\nabla^2 \left(\frac{1}{r}\right) = 0$	ϕ is a scalar	func	tion	then	prov	ve th	at V	. (φ.	A) =	:	,	03