Reg	No
ILUZ.	110.

1ANIPAL INSTITUTE OF TECHNOLOGY

stituent Institution of Manipal University

III SEMESTER B.Tech. (BME) DEGREE MAKEUP EXAMINATIONS DEC/JAN 2016-17 SUBJECT: BIOMECHANICS (BME 2104) (REVISED CREDIT SYSTEM) Friday, 6th January 2017, 9 to 12 noon

Instructions to Candidates:

TIME: 3 HOURS

MAX. MARKS: 100

Answer all FIVE full questions.

1. Draw labeled diagram wherever necessary. 2.

- 1A. By considering the composition of blood, explain why blood is a non-Newtonian fluid. 6
- If an idealized network is upset by a sphincter (in the branch C) shown below, mention the 1**B**. 6 possible changes that might happen in the total n/w with reasons, when the blood has to flow from 1 to 2? Assume that A, B, C, D, E branches are equal in diameter and length.

- 1C. Define viscosity and derive the Newton's law of viscosity.
- Using Einstein's equation to predict viscosity as a function of Hematocrit and temperature, 2A. 6 calculate the viscosity of blood at 37 °C using a Hematocrit of 42% and plasma viscosity of $1.24 \text{ x } 10^{-3} \text{ Ns/m}^2$.

8

2B.	Explain about the viscoelastic nature of the protoplasm.	6
2C.	Derive and obtain the differential equation for Maxwell model.	8
3A.	Explain the mechanical properties of capillaries.	6
3B.	Draw the pressure-volume curves for a normal functioning lung and an excised human lung (separately) and compare them.	6
3C.	Diagrammatically represent the following major categories of mechanical prosthetic heart valves. (i) Caged-ball	8
	 (ii) Caged-disk (iii)Tilting-disk (iv)Bileaflet pivoting-disk 	
4A.	Describe about the following skin abnormalities which can be detected by durometer. (i) Scleroderma (ii) Lipodermatoscelrosis (iii)Neuropathic foot	6
4B.	How do you explain the non-linear phase in the force-deformation curve for tendon and ligament?	6
4C.	Explain the mechanical properties of skin.	8
5A.	Write the functions performed by a muscle.	6
5B.	Explain the biomechanics of trabecular bone.	6
5C.	With appropriate examples, define the following muscle action.(i) Agonist(ii) Antagonist	8

- (iii)Stabilizer (iv)Neutralizer