

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

A Constituent Institution of Manipal University

III SEMESTER B.TECH. (E&C/EE/ICE/BM ENGINEERING) MAKEUP EXAMINATIONS, DEC. 2016

SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2102]

REVISED CREDIT SYSTEM (28/12/2016)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

1A.	Find the half range Fourier cosine series expansion of $f(x) = \begin{cases} x, \ 0 < x < \frac{\pi}{2} \\ \pi - x, \ \frac{\pi}{2} \le x < \pi \end{cases}$ Also draw the graph of corresponding periodic extension of f(x).	3				
1B.	Find the Fourier transform of $f(x) = \begin{cases} 1 - x , & x \le 1 \\ 0, & x > 1 \end{cases} and hence evaluate \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt.$	3				
1C.	Expand $f(x) = x - x^2 - l \le x \le l$, $f(x+2l) = f(x)$, as a Fourier series and hence evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.					
2A.	Find the Fourier sine transform of x^{a-1} , $0 < a < 1$, and hence find $F_s \left\{ \frac{1}{\sqrt{x}} \right\}$					
2 B .	Find the analytic function $f(z) = u+iv$ for which $u=e^x(x\cos y - y\sin y)$					
2C.	(i) Find all possible expansion of $f(z) = \frac{z}{(z^2 + 5z + 6)}$ about $z = 0$. (ii) Expand $f(z) = z e^z$ about $z = 1$.					
3A.	If $f(z) = u + iv$ is analytic function of z, show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	3				

Reg. No.						
----------	--	--	--	--	--	--

AN SPIL	MANIPAL INSTITUTE OF TECHNOLOG MANIPAL A Constituent Institution of Manipal University	Y			
3B.	Evaluate $\oint_C \frac{z^2 + 4}{(z^3 + 2z^2 + z)} dz$ where $C: z = 2$.				
3C.	State and prove the Green's theorem.	4			
4A.	Find the angle between the surfaces $xy^2z = 3x+z^2$ and $3x^2-y^2+2z = 1$ at the point (1,-2,1).	3			
4B.	Show that $\vec{F} = (2xz\cos y + y + 2)i + (x - x^2z\sin y + z)j + (x^2\cos y + y + 3)k$ is conservative. Find its scalar potential and find the work done by \vec{F} in moving a particle in this force field from (1, 0, 2) to $\left(2, \frac{\pi}{2}, 1\right)$.	3			
4C.	Verify Stoke's theorem for $\vec{A} = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.	4			
5A.	Solve $u_{xx} - 2u_{xy} + u_{yy} = 0$ using the transformations $v = x, z = x + y$.	3			
5B.	Assuming the most general solution, solve the one dimensional wave equation $u_{tt} = c^2 u_{xx}$ in a string of length π whose ends are fixed, starts vibration with zero initial velocity and the initial deflection is $f(x) = 2\sin 2x - 4\sin 3x$, $0 < x < \pi$.	3			
5C.	Derive the one dimensional heat equation using Gauss divergence theorem.	4			