Reg. No.

III SEMESTER B.Tech. (BME) DEGREE MAKE-UP EXAMINATIONS DEC/JAN 2016-17

SUBJECT: NETWORK ANALYSIS (BME 2101) (REVISED CREDIT SYSTEM)

Friday, 30th December 2016, 9 AM to 12 NOON

Instructions to Candidates:

TIME: 3 HOURS

MAX. MARKS: 100

1. Answer ALL questions.

- 2. Draw labeled diagram wherever necessary
- 1a) For network shown in Fig. Q1a, Find the currents in all the branches of the resistors. (6) Use mesh current analysis.

1b) For the network shown in Fig. Q1b, determine the value of R_L so that maximum power (6) is delivered to it. What is the maximum power?

1c) For the network shown in Fig.Q1c, find the voltage v across 3Ω resistor using (8) superposition theorem.

2b) For the circuit shown in Fig.Q2b, Write the two mesh equations.

2c) The network shown in the Fig.Q2c, find the current I in 10Ω resistor using Thevenin's (8) theorem.

3a) For the network shown in Fig.Q3a, obtain STAR equivalent circuit.

Fig.Q3a

3b) Find the Laplace transform of the following.

(i)
$$f_1(t) = 1 + 2t^3 - 4e^{3t} + 5e^{-t}$$

(ii) $f_2(t) = 3\cosh 4t + 4\sin 3t$

(6)

(6)

(6)

(6)

- **3c**) State and prove initial value theorem and final value theorem.
- **4a**) In the network shown in Fig.Q4a, the switch K is closed at t=0. Find, (6)

(*i*) i (0⁺) (ii) $\frac{di}{dt}(0^+)$ (iii) $\frac{d^2i}{dt^2}(0^+)$

4b) For the periodic waveform shown in the Fig.Q4b, obtain its Laplace transform V(s). (6)

4c) For the circuit shown in Fig.Q4c, the switch K is closed at t=0. With the network parameter values, solve for $i_2(t)$. (8)

(6)

5a) Convert Z parameters in terms of ABCD parameters.

(8)

5c) For the network shown in Fig. Q5c, find $G_{12}(s) = \frac{V_2(s)}{V_1(s)}$ (6)

Fig.Q5c