Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

III SEMESTER B.Tech.(BME) DEGREE MAKE-UP EXAMINATIONS DEC/JAN 2016-17 SUBJECT: SIGNALS & SYSTEMS (BME 209) (REVISED CREDIT SYSTEM)

Monday, 2nd January 2017, 9am to 12 Noon

TIME: 3 HOURS

MAX. MARKS: 100

04

08

Instruction to Candidates:

Answer any FIVE full questions.

(a) What is the condition for a discrete-time LTI system to be (a) Causal, (b) Stable?
08 Investigate the causality and stability of the following discrete-time LTI systems. Justify your answer.

(i) $h[n] = 5\delta[n-2]$ (ii) h[n] = u[n+2] + u[n-1] - 2u[n-3]

(b) A discrete-time LTI system has an impulse response h[n] = 2δ[n + 1] + 2δ[n − 1].
08 If the input to the system is x[n] = δ[n] + 2δ[n − 1] − δ[n − 3], Compute and plot the output y[n].

(c) Sketch the following signals:

(i) u(t) - u(t-3) (ii) u(t)u(1-t) (iii) r(3-t)u(t) (iv) $e^{-2t}u(2-t)$

- 2. (a) (i) Define Dirac delta function $\delta(t)$ and list its properties.06(ii) Prove that the Dirac delta function is the derivative of the step function u(t) w.r.t time t.
 - (b) Evaluate and sketch y(t), where: $y(t) = \{u(t+2) - u(t-1)\} * u(-t+2), \text{ and } "*" \text{ denotes continuous convolution.}$
 - (c) A discrete-time signal is given by $x[n] = \{-1, -0.5, 0.5, 1, 1, 1, 1, 0.5\}$. 06

Sketch each of the following versions of the signal. (i) x[n-4] (ii) x[3n+1] (iii) x[n]u[3-n] (iv) $x[n-2]\delta[n-2]$

3. (a) Determine whether the following signals are periodic. If they are periodic, find the fundamental period. **04**

(i)
$$x[n] = \cos\left(\frac{1}{4}n\right)$$
 (ii) $x[n] = (-1)^n$

(b) For the band-limited signal x(t), construct the spectrum of the sampled signal under the following conditions: (i) $w_s \ge 2w_m$ (ii) $w_s < 2w_m$

Comment on the effect of under sampling.

BME 209

	(c)	Consider two LTI systems with impulse responses $h_1[n] = \delta[n-2]$ and $h_2[n] = \delta[n-3]$ respectively. Calculate the overall impulse response $h[n]$, if the systems are connected in (i) cascade (ii) parallel.	08
4.	(a)	Consider a continuous-time signal $x(t) = \cos(5\pi t) + 0.5\cos(10\pi t)$.	04
		(i) Find the maximum allowable value of the sampling interval, T_s .	
		(ii) What is the minimum bandwidth of the low pass filter, required to reconstruct the signal without distortion?	
	(b)	State and explain the following properties of the Fourier transform.	08
		(i) Time-shifting (ii) Frequency-shifting (iii) Time-scaling	
	(c)	Find the Fourier transform of each of the following functions:	08
		(i) $x(t) = 1$ (ii) $x(t) = \delta(t)$ (iii) $e^{jw_0 t}$ (iv) $x(t) = \cos(w_0 t)$	
5.	(a)	(i) Find the impulse response $h[n]$ of the causal discrete-time LTI system satisfying the following difference equation: $y[n] = x[n] + y[n-1]$.	04
		(ii) Show that the above system is unstable.	
	(b)	Consider a rectangular pulse train $f(t)$ defined over one period as $f(t) = \begin{cases} A ; t < \frac{\tau}{2} \\ 0 ; \frac{\tau}{2} < t < (T_o - \frac{\tau}{2}) \end{cases}$	08
		The signal is periodic with a fundamental period T_o and has a duty cycle=20%.	
		Determine the exponential Fourier series. Also, sketch the magnitude spectra.	
	(c)	Explain the following system properties:	08
		(i) Linearity (ii) Time invariance (iii) Causality (iv) Stability	
6.	(a)	Derive the equation for the convolution sum.	04
	(b)	For the systems defined by the following input-output relationship, check for linearity, time-invariance, causality & stability:	08
		(i) $y[n] = \frac{1}{3} [x[n] + x[n-1] + x[n-2]]$ (ii) $y(t) = x(t) \sin 6t$	
	(c)	Consider a continuous-time LTI system described by the first order differential equation $\frac{dy(t)}{dt} + 2y(t) = x(t)$. Using the Fourier transform, find the following:	08
		(i) The frequency response of the system. (ii) The impulse response of the system.	
		(iii) The step response of the system.	