		Reg. No.										
The state of the s	MANIPAL MANIPAL	INSTITU'	ГΕ	O	F	TF	EC	HI	NO	DL	O	GY

III SEMESTER B.TECH. (BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, NOV/DEC 2016 SUBJECT: BIOPROCESS CALCULATIONS [BIO 2104] REVISED CREDIT SYSTEM (02/12/2016)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitable assumed.

1A.	Your responsibility is to develop a complete bioprocess for the commercial manufacture of a new rDNA derived product. Elaborate the sequence of steps and explain the each step:					
1B.	The heat capacity of CO gas is given by $C_P = 26.586 + 7.582 * 10^{-3} \text{ T} - 1.12 * 10^{-6} \text{ T}^2$, where C_P is in kJ/(kmol K) and temperature is in K. Obtain the equations which will express a. Cp in cal/mol °C and T in °C b. Cp in Btu/lb-mol °F and T in °F					
2A.	Roots of the Begonia rex plant are cultivated in an air-driven bioreactor in medium containing glucose and two nitrogen sources, ammonia and nitrate. The root biomass can be represented stoichiometrically using the formula CH _{1.63} O _{0.8} N _{0.13} . A simplified reaction equation for growth of the roots is: C ₆ H ₁₂ O ₆ + 3.4O ₂ + 0.15NH ₃ + 0.18HNO ₃ → 2.5CH _{1.63} O _{0.8} N _{0.13} + 3.5CO ₂ + 4.3H ₂ O a. If the medium contains 30g/L glucose, what minimum concentration of nitrate (in molarity) is required to achieve complete conversion of the sugar? b. If the bioreactor holds 50 L of medium and there is complete conversion of the glucose, what mass of roots will be generated? c. For the conditions described in (b), what minimum volume of air at 20°C and 1 atm pressure must be provided to the bioreactor during growth?	6				
2B.	Fresh orange juice contains 12.0 wt% solids and the balance water, and the concentrated orange juice contains 42.0 wt% solids. Initially a single evaporation process was used for the concentration, but volatile constituents of the juice escaped with the water, leaving the concentrate with a flat taste. The current process overcomes this problem by bypassing the evaporator with a fraction of the fresh juice. The juice is concentrated to 58 wt% solids, and the evaporator product stream is mixed with the bypassed fresh juice to achieve the desired final concentration. Calculate the amount of product (42% concentrate) produced per 100 kg fresh juice fed to the process and the fraction of the feed that bypasses the evaporator.					
3A.	Formaldehyde is produced by the gas phase oxidation of methanol with air over a catalyst: $CH_3OH + \frac{1}{2}O_2 \rightarrow HCHO + H_2O$. 100 m³ of methanol vapor at 1.013*10 ⁵ N/m² and 550 K is to be treated. If 10% excess air is supplied and the reaction is only 80% complete, calculate a. The composition of the product gas b. The volume of product gases at 1.5*10 ⁵ N/m² and 800 K.	4+1				

BIO 2104 Page 1 of 2

3В.	Aerobic degradation of an organic compound by a mixed culture of organisms in waste water can be represented by the following reaction: $C_3H_6O_3 + aO_2 + bNH_3 \rightarrow cC_5H_7NO_2 + dH_2O + eCO_2$. Determine a, b, c, d, and e, if Y_{XS} =0.4 g X / g S								5
4A.	Corn-steep liquor contains 2.5 % invert sugars and 50% water; the rest can be considered solids. Beet molasses containing 50% sucrose, 1% invert sugars, 18% water and the remainder solids, is mixed with corn-steep liquor in a mixing tank. Water is added to produce a diluted sugar mixture containing 2% invert sugars. 125 kg corn-steep liquor and 45 kg molasses are fed into the tank. a. How much water is required? b. What is the concentration of sucrose in the final mixture?								3+2
4B.	A feed mixture containing 40% benzene, 30% toluene and 30% xylene is being separated into three product streams using two distillation columns. All the compositions are expressed as wt%. Benzene stream consists of 99.5% benzene and 0.5% toluene. Toluene stream consists of 97% toluene and 2% benzene and 1% xylene while the xylene stream contains 95% xylene and 5% toluene. Determine the recovery of each feed component in its own product stream and the composition of intermediate stream:								5
	S.cerevisiae is grown anaerobically in continuous culture at 30°C. Glucose is used as carbon source; ammonia is the nitrogen source. A mixture of glycerol and ethanol is produced. Mass flows to and from the reactor at steady state are as follows: Estimate the cooling requirements:								
5A.	Compound	$C_6H_{12}O_6$	5 in NH ₃ in	Cells out	C ₃ H ₈ O ₃ out	C ₂ H ₅ OH out	CO		5
	Amount (kg/h)	36	0.4	2.81	7.94	11.9	13.0		
	Standard heat of combustion	– 2805. kJ/mo			– 1655.4 kJ/mol	– 1366.8 kJ/mol			
	The mutation rate of <i>E. coli</i> increases with temperature. The following data were obtained by measuring the frequency of mutation of his^- cells to produce his^+ colonies: Temperature (°C) 15 20 25 30 35								
5 D		tation	4.4 x 10 ⁻¹⁵	2.0 x 10 ⁻¹⁴	8.6 x 10			1.4 x 10 ⁻¹²	5
5B.	The relative mutation frequency, α is expected to obey an Arrhenius-type equation: $\alpha = \alpha_0 \ EXP \ (-E/RT)$, where α_0 is the mutation rate parameter, E is activation energy, R is the ideal gas constant, and T is the absolute temperature. a. What is the activation energy for the mutation reaction? b. What is the value of α_0 ?								

BIO 2104 Page 2 of 2