Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

III SEMESTER B.TECH. (CHEMICAL ENGINEERING)

MAKEUP EXAMINATIONS, JAN 2017

SUBJECT: CHEMICAL ENGINEERING THERMODYNAMICS-I [CHE 2104]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

1A.	Explain briefly the following with examples:(i) internal energy and enthalpy(iii) Gibbs and Helmholtz free energy	(ii) state and path function(iv) open and isolated system	12
1B.	Calculate the volume of methanol vapour at 500 K and 10 bar using the Redlich- Kwong equation (iterative procedure). The critical temperature and critical pressure of methanol are 512.6 K and 81 bar.		08
2A.	With the help of PT diagram, discuss the variation of vapour pressure of a substance with temperature.		08
2B.	Starting from the van der Waals equation, derive the expression for critical volume, critical temperature and critical pressure in terms of van der Waals constants a and b.		08
2C.	Define perpetual motion machine with respect to first law and second law of thermodynamics.		04
3A.	An ideal gas is undergoing a series of three operations: The gas is heated at constant volume from 300 K and 1 bar to a pressure of 2 bar. It is expanded in a reversible adiabatic process to a pressure of 1 bar. It is cooled at constant pressure of 1 bar to 300 K. Determine the heat and work effects for each effect. Assume Cp= 20.986 kJ/kmol K.		09
3B.	Derive the expression for first law of thermodynamics for a flow process.		09
3C.	State third law of thermodynamics from statistical approach.		02
4A.	With diagrams, explain Kelvin-Planck and Clausius statement based on heat engine and heat pump.		05
4B.	A Carnot refrigerator consumes 200 W power in temperature is 40 [°] C. The rate at which energy is degree Celsius temperature difference between to Determine the cold space temperature, if the ref	a summer when the ambient lost as heat is estimated at 15 W per the ambient and the cold space. rigerator is operating continuously.	05

4C.	Starting from the fundamentals, derive all the four Maxwell's relations.	10
5A.	Derive the expression between heat capacities $\frac{C_p}{C_v} = \left(\frac{\partial V}{\partial P}\right)_T \left(\frac{\partial P}{\partial V}\right)_S$	06
5B.	Discuss with a neat flow diagram, the Reheat cycle of steam power plant. Also discuss the TS diagram.	10
5C.	Discuss any four properties of the refrigerant.	04