

ANIPAL INSTITUTE OF TECHNOLOGY

# **III SEMESTER B.TECH. (CHEMICAL ENGINEERING)**

## MAKE-UP EXAMINATION, DEC/JAN 2016

### SUBJECT: CHEMICAL PROCESS CALCULATIONS [CHE 2101]

## **REVISED CREDIT SYSTEM**

### Time: 3 Hours

### MAX. MARKS: 100

# Instructions to Candidates:

- ✤ Answer ALL questions.
- ✤ Missing data, if any, may be suitably assumed.
- ✤ Atomic Mass- Mg:24.3, O:16, N:14, S: 32, Na: 23, H:1, C:12, Ca:40,
  - Cl: 35.5, Cu: 63.5, P:31, Cr:52

| 1A.          | Convert :<br>i. Density of 15 gm/cc to kg/m <sup>3</sup><br>ii. Viscosity of 7.5 cp to lbm/ft.hr.<br>iii. Mass flow rate of 100 lb/hr.ft <sup>2</sup> to kg/sec.m <sup>2</sup><br>iv. 2 kcal/hr into watts                                                                                                                                                                                                                                                                                                                      | 10 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1 <b>B</b> . | A solution of Caustic Soda (NaOH) in water contains 20% by wt. of NaOH at 333K. The density of the solution is 1.196 kg/lit. Find the molarity, normality and molality of the solution.                                                                                                                                                                                                                                                                                                                                         | 10 |
| 2A.          | A solution containing sodium sulfate in water is crystallized out by cooling the solution to 5°C. The original solution is saturated to 40°C and deca-hydrate crystals are obtained. Estimate the wt. of crystal obtained by cooling a batch of 2000 kg of this solution. Solubility at 40°C= 32.6 % Solubility at 5°C= 5.75 % Both solubilities have units of kg Na <sub>2</sub> SO <sub>4</sub> / kg solution (Molecular Wts: Na <sub>2</sub> SO <sub>4</sub> =142, Na <sub>2</sub> SO <sub>4</sub> .10H <sub>2</sub> O= 322) | 10 |
| 2 <b>B</b> . | A waste acid from a nitration process contains 21 % $HNO_3$ , 55 % $H_2SO_4$ , and 24 % water. The acid is to be concentrated to contain 28 % $HNO_3$ , 62% $H_2SO_4$ by wt. by the addition of conc. $H_2SO_4$ and $HNO_3$ having concentrations 93 % and 90% by wt. respectively. Calculate the weight of the waste acid and conc. acid required to obtain a product of 1000kg.                                                                                                                                               | 10 |

| 3A.        | Determine the flue gas analysis and air-fuel ratio by wt. when a fuel oil with 84.5% C, $11.8\%$ H <sub>2</sub> , $3.2\%$ S, $0.4\%$ O <sub>2</sub> , $0.1\%$ ash is burned with 25% excess air.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3B.        | Solid material with 15% water is to be dried to 7% water under the following conditions:<br>Fresh air is mixed with recycled air and is blown over the solid. The humidity of fresh air =0.01 kg water/ kg of dry air and the recycled air has a humidity=0.1 kg of water/ kg of dry air. They are mixed in such a way that the entering mix to the drier has a humidity of 0.03 kg water/ kg dry air.<br>Calculate<br>i. Kg of dry air/ 100 kg of wet material<br>ii. Kg of water removed/ kg of feed<br>iii. Ratio of recycled air to fresh air<br>If fresh air enters at 60°C and 10 atm, find the volume of the air entering.                                                                                                                                            | 10 |
| 4A.        | Antimony (Sb) is obtained by heating pulverized Stibinite (Sb <sub>2</sub> S <sub>3</sub> ) with a scrap iron and<br>drawing of the molten antimony from the bottom of the reaction vessel.<br>Suppose that 0.6 kg of stibinite and 0.25 kg of iron turnings are heated together to give 0.2<br>kg of antimony metal.<br>Calculate:<br>i. The limiting reactant<br>ii. % excess reactant<br>iii. Degree of completion<br>iv. % conversion<br>Given: Mol Wt.: Stibinite= 339.7; Antimony=121.85; Fe= 55.85                                                                                                                                                                                                                                                                    | 10 |
| <b>4B.</b> | <ul> <li>N<sub>2</sub> and H<sub>2</sub> mixed in a mole ratio of 1:3 is used for manufacturing NH<sub>3</sub>. The conversion per pass is 16%. Ammonia is separated and the unconverted gases are recycled. The feed contains 0.2 moles of Argon per 100 moles of N<sub>2</sub> and H<sub>2</sub> mix by volume. The tolerance limit of Argon entering the reactor is 6 parts per 100 parts of N<sub>2</sub> and H<sub>2</sub> mix by volume. Calculate: <ul> <li>i. The fraction of the recycle that must be continuously purged.</li> <li>ii. Recycle ratio</li> </ul> </li> </ul>                                                                                                                                                                                        | 10 |
| 5A.        | The flue gases are leaving the chimney of a boiler at 300°C the molar composition of which are as follows. $CO_2=11.3\%$ , $CO=0.26\%$ , $H_2O=13.04\%$ , $O_2=2\%$ , $N_2=73.4\%$ .<br>Calculate Q in 100 kg mole of gas mixture above 25°C using the following C <sub>p</sub> data (kcal / kg mole °K)<br>$CO_2=6.396+10.1 \times 10^{-3} \text{ T} - 3.354 \times 10^{-7} \text{ T}^2$<br>$CO=6.48+1.566 \times 10^{-3} \text{ T} - 2.359 \times 10^{-7} \text{ T}^2$<br>$H_2O=6.732+1.505 \times 10^{-3} \text{ T} - 1.791 \times 10^{-7} \text{ T}^2$                                                                                                                                                                                                                   | 10 |
| 5B.        | Liquid methanol is burnt with 100 % excess air, methanol is fed at 25°C and air enters at 100°C. assume complete combustion and calculate the highest temperature that the furnace wall will have to withstand.<br>$\Delta H_R^\circ = -726.6 \text{ kJ/mole.}$<br>Cp of air at 100°C = 29.1 J/mole.<br>Cp (J/mole K)<br>CO <sub>2</sub> = 36.11+ 4.233 x 10°2 T - 2.887 x 10°5 T <sup>2</sup><br>H <sub>2</sub> O= 33.46+ 0.688 x 10°2 T + 0.7604 x 10°5 T <sup>2</sup><br>O <sub>2</sub> = 29.1+ 1.158 x 10°2 T - 0.6076 x 10°5 T <sup>2</sup><br>N <sub>2</sub> = 29.0+ 0.22 x 10°2 T +0.5723 x 10°5 T <sup>2</sup><br>Latent heat of vaporization = 44.013 kJ/mole<br>CH <sub>3</sub> OH (l) + 3/2 O <sub>2</sub> $\rightarrow$ CO <sub>2</sub> + 2 H <sub>2</sub> O (l) | 10 |