

AANIPAL INSTITUTE OF TECHNOLOGY

III SEMESTER B.TECH. (CHEMICAL ENGINEERING)

END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: CHEMICAL PROCESS CALCULATIONS [CHE 2101]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

- ✤ Answer ALL questions.
- ✤ Missing data, if any, may be suitably assumed.
- * Atomic Mass- Mg:24.3, O:16, N:14, S: 32, Na: 23, H:1, C:12, Ca:40,
 - Cl: 35.5, Cu: 63.5, P:31, Cr:52

30/11/2016

1A.	Convert:	3x2
	i. The viscosity of water at 60°F is given as 7.8 x 10^{-4} lb ft ⁻¹ s ⁻¹ .	
	Calculate this viscosity in N s m^{-2} .	
	ii. The thermal conductivity of aluminium is given as 120 Btu $ft^{-1} h^{-1} \circ F^{-1}$.	
	Calculate this thermal conductivity in W m ⁻¹ $^{\circ}$ C ⁻¹ .	
1B.	The density of a 3 M aqueous solution of sodium thiosulfate $(Na_2S_2O_3)$ is 1.25 g/mL.	10
	Calculate	
	i. Conc. of sodium thiosulfate in wt %	
	ii. Mole fraction of sodium thiosulfate	
	iii. Molality of Na ⁺ and $S_2O_3^{2-}$ ions.	
1C.	Find the empirical molecular formula of chromium oxide containing 68.4% of chromium	4
	and the rest oxygen.	
2A.	Calculate the density of Chlorine gas at 100 atmosphere and 230°C using (i) Ideal gas	12
	(ii) Van der Waals equation .	
	Data: $Pc = 76.1 \text{ atm.}, Tc = 417K$	
	$a = (27 \text{ R}^2 \text{T}c^2)/(64 \text{Pc})$ and $b = (\text{RTc})/8 \text{ Pc}$	
2B.	Acetone nitrile is produced by the reaction of propylene, ammonia and O_2 .	8
	$C_3H_6 + NH_3 + 3/2 O_2 \rightarrow C_3H_3N + 3 H_2O$	
	The feed contains 10 % propylene, 12 % ammonia and 78 % air (in mole %)	
	i. Determine the limiting reactant	
	ii. % by which the other reactants are in excess.	

	Air at a temperature of 303K and pressure of 750 mmHg has a relative humidity of 80%.	10
	Calculate	
	i. The absolute humidity of the air.	
	ii. The absolute humidity of this air if the temperature is reduced to 288K and the	
	pressure is increased to 2 atm. condensing out some water,	
	111. The weight of water condensed during cooling and compression.	
20	(vapour pressure of water is 31.8 and 12.75 mm Hg at 303K and 288K respectively)	10
3B .	In a crystallization process 2000kg of crystalline $Na_2SO_4.10H_2O$ are obtained and the	10
	mother liquor was found to contain 20% Na ₂ SO ₄ (anhydrous) by weight. If the feed	
	solution contained 30% Na ₂ SO ₄ by weight and 20% of original water is lost by evaporation.	
	Calculate the weight of feed solution, weight of mother liquor left and weight of water	
	evaporated.	
4A.	A stock containing 1.562 kg moisture per kg dry solid is dried to 0.099 kg moisture per kg	10
	dry solid by countercurrent air flow. Fresh air entering contains 0.0152 kg water per kg dry	
	air and the exit air has 0.0520 kg water per kg dry air. What fraction of air is recycled if 52.5 kg of dry air flows nor 1 kg of dry solid inside the drive (M)2 E. D. M. D. and E.	
	52.5 kg of dry air nows per 1 kg of dry solid liside the drief (M)? F, K, M, D and E represent flow rates of only the dry air present in the corresponding stream	
	represent now rates of only the dry an present in the corresponding stream.	
	R Recycle Air	
	Fresh Air F Counter current Dryer D E Exit Air	
	Water/kg dry air	
	Dried Solid Feed Solid	
	0.099 kg 1.562 kg	
	moisture/kg dry solid moisture/kg dry solid	
4B.	A fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and	10
4B.	A fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon	10
4B.	A fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen	10
4B.	A fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.	10
4B.	A fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.	10
4B. 5A.	A fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.	10
4B. 5A.	moisture/kg dry solidmoisture/kg dry solidA fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.Given the standard heats of reaction at constant pressure: H_2 (g) +½ O_2 (g) \rightarrow H ₂ O (l); ΔH = - 68.3 kcal	10 8
4B. 5A.	moisture/kg dry solidmoisture/kg dry solidA fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.Given the standard heats of reaction at constant pressure: $H_2 (g) + \frac{1}{2} O_2 (g) \rightarrow H_2O (l);$ $\Delta H = -68.3 \text{ kcal}$ $C_2H_2 (g) + 2.5 O_2(g) \rightarrow 2 \text{ CO}_2 (g) + H_2O (l);$ $\Delta H = -310.6 \text{ kcal}$	10 8
4B. 5A.	moisture/kg dry solidmoisture/kg dry solidA fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.Given the standard heats of reaction at constant pressure: $H_2 (g) + \frac{1}{2} O_2 (g) \rightarrow H_2O (1);$ $\Delta H = -68.3 \text{ kcal}$ $C_2H_2 (g) + 2.5 O_2(g) \rightarrow 2 CO_2 (g) + H_2O (1);$ $\Delta H = -310.6 \text{ kcal}$ $C_2H_4 (g) + 3 O_2(g) \rightarrow 2 CO_2 (g) + 2 H_2O (1)$ $\Delta H = -337.2 \text{ kcal}$	10
4B. 5A.	moisture/kg dry solidmoisture/kg dry solidA fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.Given the standard heats of reaction at constant pressure: 	10
4B. 5A.	moisture/kg dry solidmoisture/kg dry solidA fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.Given the standard heats of reaction at constant pressure: 	10
4B. 5A.	Moisture/kg dry solid A fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air. Given the standard heats of reaction at constant pressure: $H_2 (g) + \frac{1}{2} O_2 (g) \rightarrow H_2 O (l);$ $\Delta H = -68.3 \text{ kcal}$ $C_2H_2 (g) + 2.5 O_2(g) \rightarrow 2 CO_2 (g) + H_2 O (l);$ $\Delta H = -310.6 \text{ kcal}$ $C_2H_4 (g) + 3 O_2(g) \rightarrow 2 CO_2 (g) + 2 H_2 O (l)$ $\Delta H = -337.2 \text{ kcal}$ Find ΔH^0_R for the following equation $C_2H_2 (g) + H_2 (g) \rightarrow C_2H_4 (g)$ What is the maximum temperature that can be attained by combustion of CH, with 20.%	10
4B. 5A. 5B.	A fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air. Given the standard heats of reaction at constant pressure: $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1);$ $\Delta H = -68.3$ kcal $C_2H_2(g) + 2.5 O_2(g) \rightarrow 2 CO_2(g) + H_2O(1);$ $\Delta H = -310.6$ kcal $C_2H_4(g) + 3 O_2(g) \rightarrow 2 CO_2(g) + 2 H_2O(1)$ $\Delta H = -337.2$ kcal Find ΔH^o_R for the following equation $C_2H_2(g) + H_2(g) \rightarrow C_2H_4(g)$ What is the maximum temperature that can be attained by combustion of CH ₄ with 20 % excess air, both CH ₄ and air enter at 25°C. Assume complete combustion	10 8 12
4B. 5A. 5B.	moisture/kg dry solidmoisture/kg dry solidA fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.Given the standard heats of reaction at constant pressure: H ₂ (g) +½ O ₂ (g) → H ₂ O (l); ΔH= - 68.3 kcal C ₂ H ₂ (g) + 2.5 O ₂ (g) → 2 CO ₂ (g) + H ₂ O (l); ΔH= - 310.6 kcal C ₂ H ₄ (g) + 3 O ₂ (g) → 2 CO ₂ (g) + 2 H ₂ O (l) ΔH= - 337.2 kcalFind ΔH° _R for the following equation C ₂ H ₂ (g) + H ₂ (g) → C ₂ H ₄ (g)What is the maximum temperature that can be attained by combustion of CH ₄ with 20 % excess air, both CH ₄ and air enter at 25°C. Assume complete combustion. ΔH _P °= - 191760 cal.	10 8 12
4B. 5A. 5B.	moisture/kg dry solidmoisture/kg dry solidA fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.Given the standard heats of reaction at constant pressure: H2 (g) +½ O2 (g) → H2O (l); C2H2 (g) + 2.5 O2(g) → 2 CO2 (g) + H2O (l); C4H= - 68.3 kcal C2H4 (g) + 3 O2(g) → 2 CO2 (g) + 2 H2O (l); C4H= - 310.6 kcal C2H4 (g) + 3 O2(g) → 2 CO2 (g) + 2 H2O (l) C4H= - 337.2 kcalFind ΔH° R for the following equation C2H2 (g) + H2 (g) → C2H4 (g)What is the maximum temperature that can be attained by combustion of CH4 with 20 % excess air, both CH4 and air enter at 25°C. Assume complete combustion. ΔHR° = - 191760 cal. Mean Cp Data (cal/gmole K)	10 8 12
4B. 5A. 5B.	moisture/kg dry solidmoisture/kg dry solidA fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.Given the standard heats of reaction at constant pressure: H ₂ (g) +½ O ₂ (g) → H ₂ O (l); C ₂ H ₂ (g) + 2.5 O ₂ (g) → 2 CO ₂ (g) + H ₂ O (l); C ₂ H ₄ = - 310.6 kcal C ₂ H ₄ (g) + 3 O ₂ (g) → 2 CO ₂ (g) + 2 H ₂ O (l) AH= - 337.2 kcalFind ΔH° _R for the following equation C ₂ H ₂ (g) + H ₂ (g) → C ₂ H ₄ (g)What is the maximum temperature that can be attained by combustion of CH ₄ with 20 % excess air, both CH ₄ and air enter at 25°C. Assume complete combustion. ΔH _R ° = - 191760 cal. Mean Cp Data (cal/gmole K) CO ₂ =12.95	10 8 12
4B. 5A. 5B.	moisture/kg dry solidmoisture/kg dry solidA fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.Given the standard heats of reaction at constant pressure: H ₂ (g) +½ O ₂ (g) → H ₂ O (l); C ₂ H ₂ (g) + 2.5 O ₂ (g) → 2 CO ₂ (g) + H ₂ O (l); ΔH= - 68.3 kcal C ₂ H ₄ (g) + 3 O ₂ (g) → 2 CO ₂ (g) + 2 H ₂ O (l) ΔH= - 310.6 kcal C ₂ H ₄ (g) + 3 O ₂ (g) → C ₂ H ₄ (g)Find ΔH° what is the maximum temperature that can be attained by combustion of CH ₄ with 20 % excess air, both CH ₄ and air enter at 25°C. Assume complete combustion. ΔH _R °= - 191760 cal. 	10 8 12
4B. 5A. 5B.	moisture/kg dry solidmoisture/kg dry solidA fuel oil having a composition, carbon 84%, hydrogen 13%, sulphur 1%, oxygen 1%, and water 1% is burnt with excess air. The composition of the flue gas is analysed as carbon dioxide 9.9%, carbon monoxide 1.6%, water vapour 10.8%, sulphur dioxide 0.05%, oxygen 3.7% and nitrogen 73.95% Calculate the percentage of excess air.Given the standard heats of reaction at constant pressure: H2 (g) +½ O2 (g) → H2O (l); C2H2 (g) + 2.5 O2(g) → 2 CO2 (g) + H2O (l); C4H= - 310.6 kcal C2H4 (g) + 3 O2(g) → 2 CO2 (g) + 2 H2O (l) C4H= - 337.2 kcalFind ΔH°R excess air, both CH4 and air enter at 25°C. Assume complete combustion. ΔHR° = - 191760 cal. Mean Cp Data (cal/gmole K) CO2 =12.95 	10 8 12