

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

III SEMESTER B.TECH. (CHEMICAL/BIOTECH)

END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2103]

REVISED CREDIT SYSTEM (28/11/2016)

Time: 3 Hours

MAX MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1A.	Find the Fourier series expansion of the function $f(x) = x - x^2$ in $(-\pi, \pi)$; $f(x + 2\pi) = f(x) \forall x$. Hence show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$	4
1B.	Find the equation of the tangent plane and the normal line to the surface $x^2yz - 4xyz^2 = -6$ at the point (1, 2, 1).	3
1C	Form the PDE by eliminating the arbitrary constants 'a' and 'b' $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$, where \propto is a parameter.	3
2A.	Verify Green's theorem in the plane for $\oint_C (x^2 - xy^3) dx + (y^2 - 2xy) dy$, where C is a square with vertices (0,0)(2,0), (0,2) and (2,2).	4
2B.	Obtain the half range cosine series expansion of the function $f(x) = x \sin x$ in $(0, \pi)$.	3
2C.	Find the analytic function $f = u + iv$, where $v = \log(x^2 + y^2) + x - 2y$	3

		Reg. No.											
MANIPAL INSTITUTE OF TECHNOLOGY													
3A.	Find the residues of the following functions at their singularities. i. $f(z) = \frac{1}{z^3(z+4)}$ ii. $f(z) = \frac{1}{e^{2z}z^2}$										4		
3B.	Find the Fourier transform of the function $f(x) = \begin{cases} a - x & x < a \\ 0 & x > a \end{cases}$											3	
3C.	Prove that $\mathbf{F} = (2xy + z^3)\mathbf{i} + x^2\mathbf{j} + 3xz^2\mathbf{k}$ is conservative. Find its scalar potential.											3	
4 A.	Derive D'Alembert's solution of wave equation.											4	
4B.	Solve $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} = 0$ using the method of separation of variables.											3	
4C.	If $f(\alpha) = \int_{C} \frac{3z^2 + 7z + 1}{z - \alpha} dz$, where $C: z = 4$. Evaluate i. $f(3)$ ii. $f'(1 - i)$ iii. $f''(1 - i)$											3	
5A.	Find all the possible expan	sions of $f(z)$	$) = -\frac{1}{z}$	$\frac{1}{2-5}$	<i>z</i> + 6	- wi	ith c	ente	er z	= 1.			4
5B.	Find $F_c\{e^{ax}\}$ and hence evaluate $F_c\{\frac{1}{1+x^2}\}$ and $F_s\{\frac{x}{1+x^2}\}$											3	
5C.	Use Divergence theorem f in the first octant bounded	for $\vec{A} = 2x^2y\hat{i}$ by $y^2 + z^2 = 9$	$-y^2$ and	$\hat{j} + 4$ l x =	$xz^2\hat{k}$ = 2.	tal	ken	ove	r th	e re	gior	n	3