Reg. No.

IIIrd SEMESTER B.TECH (CHEMICAL ENGINEERING)

END SEMESTER MAKEUP EXAMINATIONS, DEC 2016/JAN 2017

SUBJECT: MECHANICAL OPERATIONS [CHE 2103]

REVISED CREDIT SYSTEM

Time: 3 Hours

Max. Marks: 100

.*.	.		41		Instr	uctions	to Cano	lidates:				
••••	Answ Fach	ver all quest	ions car	SUONS. TV AQUS	al marks	(5 X 20	- 100)					
*	Missing data, if any, may be suitably assumed.											
*	Writ	e speci	ific and	precise	answers	, Usual r	otations	shall app	oly.			
1 4	(\cdot)	D		•	4 - 1 - 4			C		- f		[05]
IA.	(1)	Derive	e an exp	oression	to deteri	nine the	specific	surface a	area (A _w)	of partic	les in the	[ບວງ
	(ii) Compare and contrast between ideal and actual screen (any 5 points).											[05]
1 B .	It is	an 8 mesh screen, a middle fraction passing on 8 mesh, but retained on a 14 mesh										
	on a	an 8 n	mesh screen, a middle fraction passing on 8 mesh but retained on a 14 mesh and a fine fraction passing a 14 mesh screen and retained on 20 mesh screen. The									
	scre	en, an	d a fine	e fraction	n passing	a 14 me	sh screen	and retain	ined on 2	0 mesh sc	reen. The	
	Tyler standard. Screen analyses of feed, coarse, medium and fine fractions are given in the											
	following Table. Assuming the analyses are accurate. What do they show about the ratio by											
	weig	ght of	overflov	w to fee	d and und	derflow t	o feed in	each of t	he three	fractions?	Calculate	
	the	the overall effectiveness of screen in the three fractions.										
		А	3/4	4/6	6/8	8/10	10/14	14/20	20/28	28/35	35/48	
		В	0.47	0.332	0.235	0.166	0.117	0.083	0.0588	0.0416	0.0294	
		F	70	300	550	470	320	182	68	26	14	
	C	CF	62.46	219.5	105.36	35.12	17.56					
		MF		25.2	214.8	184.8	109.8	61.2	4.2	05 4 4		
	whe	$\Gamma\Gamma$	– Mech		 - Screen	192	(cm): C	193.92 — Weigh	188.10	85.44	$\begin{array}{c} 44.10 \\ \text{and} (\text{gm}) \end{array}$	
	F –	Feed ·	CF - C	no, D - oarse fra	- Screen	opening IF – Mid	dle fractio	- weight	Fine fract	ion	ieu (giii),	
	1 -	reeu ,	er – e			H = 1011G		511, 11 – 1	inte muet			
2A.	(i) Explain the construction and working operation of ball mill with neat sketch.										[06]	
	(ii) Derive an equation to determine the critical speed (N_c) of the ball mill.										[06]	
2B.	The	folloy	ving ex	perimen	tal result	s were o	btained b	v crushir	ig iron of	e (hemalt	ite) using	[08]
	Jaw	crush	er. Wei	Assuming the analyses are accurate. What do they show about the fallo by w to feed and underflow to feed in each of the three fractions? Calculate /eness of screen in the three fractions. $4/6$ $6/8$ $8/10$ $10/14$ $14/20$ $20/28$ $28/35$ $35/48$ 0.332 0.235 0.166 0.117 0.083 0.0588 0.0416 0.0294 300 550 470 320 182 68 26 14 219.5 105.36 35.12 17.56 $$ $$ $$ 25.2 214.8 184.8 109.8 61.2 4.2 $$ $$ 192 256.32 193.92 188.16 85.44 44.16 no; B = Screen opening (cm); C = Weight of particles retained (gm); oarse fraction ; MF = Middle fraction; FF = Fine fraction.[06]nstruction and working operation of ball mill with neat sketch.[06]ation to determine the critical speed (N _C) of the ball mill.[06]ght of the feed is 2 kg, average size of feed is 15 mm. Energy meter ev=1 kw-hr. Under no load condition the disc takes 25 sec per revolution.[08]e the Rittinger's law constant in KJ-m/kg.[04]								
	read	Jaw crusher. Weight of the feed is 2 kg, average size of feed is 15 mm. Energy meter reading is 3600 rev=1 kw-hr. Under no load condition the disc takes 25 sec per revolution.										
	Cru	shing (duration	of the c	lisc is 15	sec per	revolution	n. The tot	al time re	equired for	crushing	
	is 7:	5 sec. (Calculat	e the Rit	ttinger's l	aw const	ant in KJ	-m/kg.		-	J	

		T			I	1	1	I	I		
	A	10	7.5	5.0	3.7	2.5	1.8	1.2	0.9	0.6	
	В	503	1114	115	62	49	70	22	15	50	
	where $A = Average particle size (mm); B = Mass of particle retained (gm).$										
3A.	Derive an entire expression to determine the terminal settling velocity (Ut) of spherical										[12]
	particle settling freely in a liquid medium under the influence of gravity in an intermediate region. List out the significance of criterion constant with equation.										
3B.	(i) Compare and contrast between classifier and clarifier.										[02]
	(ii) The data given where obtained from a single batch sedimentation test in an ore slurry.										[06]
	Determine the maximum cross sectional area of continuous thickener to handle 670										
	m^3 /hr. If the solids from a feed concentration is 3 % by wt. and the under flow										
	concentration is to be 37.29 % by wt. of solids. The density of the solids was 2.63 g/cc.										
	C _L (g/L)	64.5	70.9	94.3	3 111	.7 139.	9 173	.9 22	2 331	
	V _L ((cm/hr)	139.9	103.6	71.9	9 49.4	4 27.1	1 16.	8 10) 6.40	
	where V_L = settling rate (cm/hr); C_L = concentration of solids (g/Lit)										
4	Explain the construction working operation advantages and limitation of continuous reterms [1]										[10]
4/1.	explain the construction, working operation, advantages and limitation of continuous rotary drum vacuum filter with next sketch. Mention any four important characteristics of filter										
	medium										
			011								FO (7)
4B.	(i) It is filter	desired to	o filter a	beer con	taining c	itric acid	on a cor	ntinuous	rotary dr	um vacuum	. [06]
		. The fill	er nas an	area of I	18.1 III,	a negngi lose to 1	atm Th	im resista	which fo	rms have a	
	wash	ing effici	i pressure	nlv 60%	but it is	incompre	ssible an	d permea	ble $\frac{\mu \alpha \rho_0}{\mu \alpha \rho_0}$	$= 86 \frac{sec}{sec}$	
	The		$\frac{1}{2}$ $\frac{1}$	f filtrata	laguing		ald be w	a permea	$2\Delta P$	cm^2	
	only	10 % c	ins 7% 0 itric acid	original	leaving	ined Cal	liu de wa Iculate th	ashed un ne washi	ng time	required to	
	only 10 % citric acid originally entrained. Calculate the washing time required to process 3000 lit of beer/br										
											[04]
	(ii) The s	specific 1	the comp	of the C	ake of s	olute was	s Iound t	o vary w	in press	sure drop as	
	Drog	ws. Fillu	$\frac{\mathbf{P}}{\mathbf{P}}$	$\frac{1}{1}$	y of the t	акс. 13	13	16	1	21.1	
	Spe	cific cak	e resistan	$\frac{\alpha}{\alpha}$ (m/k	(g)	2.16	$\frac{1.3}{\times 10^{11}}$	1.95 x	(10^{11})	$\frac{21.1}{1.8410^{11}}$	
			• • • • • • • • • • • • • • • • • • • •		-6)			100		110110	1
5A.	Describe	in detail	about the	e flow pa	tterns in	an agitate	ed vessels	s with neo	cessary n	eat sketch.	[10]
5B.	(i) Derive an expression to determine the maximum possible volumetric flow rate of liquid										[05]
	(Q) in a tubular bowl centrifuge.										
	(ii) Fine	particles	are recov	vered from	n a feed	solution	by using	tubular b	owl cent	rifuge. 60%	[05]
	fine particles are recovered at a flow rate of 12 L/min with a rotational speed of 4000										
	rpm. The percentage recovery is inversely proportional to flow rate. (a) At a constant										
	rpm of 4000 rpm, what should be flow rate to result in 95% particle recovery (b) To										
	increase the recovery of fine particles to 95% at the same flow rate 12 L/min, what										
	should be the rpm of the centrifuge?.										

* * * * * *