

III SEMESTER B.TECH. CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016 SUBJECT: MOMENTUM TRANSFER [CHE 2102] REVISED CREDIT SYSTEM

(23/11/2016)

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1 A .	If the pressure and temperature at sea level are 760 mm of mercury and 15°C respectively, calculate the pressure at an altitude of 4.87 KM assuming an adiabatic atmosphere. Derive the equation used here.	08
1B.	Explain the rheological classification of fluids.	04
1C.	Derive equations for shear stress and velocity distribution in a steady, laminar, incompressible fluid through a circular pipe. Prove that the average velocity is equal to half the maximum velocity.	08
2A.	Define Newton's law of viscosity. Find the kinematic viscosity of oil of density 981kg/m3. The shear stress at a point in oil is 0.2452 N/m ² and velocity gradient at that point is 0.2 per second.	06
2B.	Derive Darcy's Equation. State all the assumptions	06
2C.	Water is to be pumped from ground level tank to a cooling tower. The difference between the level of water in the tank and discharge point is 15 meters. The velocity of water through 40mm internal diameter discharge pipe is 3m/s. The length of the entire pipe is 30 m. Calculate the power required to pump if the efficiency of the pump is 60%. Use appropriate equation for calculating friction factor.	08
3A.	Oil of viscosity 0.048 kg/ms flows through 18 mm diameter pipe with the velocity of 0.4 m/s. the density of the oil is 800 kg/m ³ . Calculate the pressure drop in the length of 45 meters pipe line.	07
3B.	Explain the physical significance of Reynolds number.	06
3C.	Explain the characteristics of turbulence.	07
4A.	Obtain equations to correlate packed bed pressure drop for laminar and turbulent flow conditions. Indicate all the assumptions in deriving the equations.	10
4B.	Differentiate between variable head and variable area meters.	04

4C.	Oil of specific gravity 0.88 and viscosity 50cp flows in a pipe of 7.5 cm diameter. The flow is measured by a pitot tube located centrally. U tube inclined manometer containing water as measuring fluid shows the reading of 40 cms. Angle of inclination of an inclined limb to the horizontal is 15°. Find the discharge in liters per minute.	06
5A.	A gaseous fuel of molecular weight 29 is at steady flow through a nozzle of 2.5 cm diameter to a furnace where the pressure is 1 atm. The temperature and pressure at the entrance to the nozzle are 17 ^o C and 2.632 atm. If the expansion factor is 1.4 and the coefficient of the nozzle is 0.95, estimate the mass flow rate through the nozzle. Derive the equation used here.	10
5B.	Explain i) Cavitation ii) NPSH	06
5C.	Write a brief not on Buckingham π theorem.	04