.									· · · · · ·	Γ	<u> </u>
	Reg. No.										
Ų	· · · · · · · · · · · · · · · · · ·	l	i								

III SEMESTER B.TECH.(COMPUTER AND COMMUNICATION ENGINEERING)

END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: DIGITAL SYSTEM DESIGN [ICT 2151]

REVISED CREDIT SYSTEM (25 /11/2016)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitably assumed.

1A.	Design a 4-bit binary Carry Look Ahead adder circuit. Discuss its merits over conventional 4-bit binary ripple carry adder.	(05)
1B.	Design asynchronous counter using negative edge triggered JK – flip flops to generate	` ′
	a square waveform (50 % duty cycle) of frequency $\frac{1}{12}$ of input clock waveform. Also draw the waveforms.	(03)
1C.	Design a JK – flip flop using D – flip flop and external gates.	(02)
2A.	Design a synchronous UP/DOWN counter using JK – flip flops and external gates to count the sequence $1 \rightarrow 3 \rightarrow 6 \rightarrow 7 \rightarrow 2 \rightarrow 1$.	(05)
2B.	Design a logic circuit to evaluate the arithmetic expression $(A^2 - B^2)$ using 7483 IC and external gates. A and B are 3-bit binary numbers with $A > B$.	(03)
2C.	Using 7490 IC and minimum external gates, design a sequential circuit to generate the sequence 00111011.	(02)
3A.	Design microprogrammed control unit for 4 x 4 Booth's multiplier.	(05)
3B.	Divide (1101) ₂ by (0101) ₂ using restoring division algorithm. Indicate all the steps.	(03)
3C.	Design a MOD – 10 twisted ring counter using JK – flip flops. Also write all the states of the counter.	(02)
4A.	Design a code converter to convert a decimal digit represented in gray code to decimal digit represented in 8 4 -2 -1 code, using 74138 ICs and external gates.	(05)
4B.	Using 74193 ICs and external gates, design a 2 – digit hexadecimal down counter which counts from 87H to 19H and repeats.	(03)
4C,	Explain salient features of a set associative mapped cache memory.	(02)
5A.	Design a sequence detector with one input Y and one output Z. The output Z is HIGH whenever the sequence "110111" is detected, otherwise the output is LOW. Overlapping of the sequence is allowed. Implement using T- flip flops and minimum external gates.	(05)
IC	T 2151 Page 1 of 2	

- 5B. Design 2-bit magnitude comparator with cascading inputs. Using the same, design a 4-bit magnitude comparator.
- bit magnitude comparator.

 5C. What is "Self complementing code"? Explain a non-weighted self-complementing code

Page 2 of 2