Reg. No.			,

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

III SEMESTER B.TECH (CS/ICT/CC- ENGINEERING) END SEMESTER EXAMINATION, NOVEMBER - DECEMBER 2016

SUBJECT: ENGINEERING MATHEMATICS III [MAT 2105]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- ❖ All the questions carry (4+3+3) marks.

1A.	Let $E(x_1, x_2, x_3) = (\overline{x_1 \wedge x_2}) \vee (\overline{x_2} \wedge x_3)$ be a Boolean expression over the two-	•				
I/A.	valued Boolean algebra. Write $E(x_1, x_2, x_3)$ in both DNF and CNF.					
1B.	Let (A, \leq) be a distributive lattice. Show that, if $a \wedge x = a \wedge y$ and					
1D.	$a \lor x = a \lor y$ for some $a \in A$, then $x = y$.	3 Marks				
	Show that a lattice (A, \leq) is distributive if and only if for any element a, b, c in					
1C.	$A, (a \lor b) \land c \le a \lor (b \land c).$	3 Marks				
	Let P_n be the unrestricted partitions of n , and P_n^* be the number of partitions	, \$ · · · ·				
	of n without unit parts. Using generating function or otherwise show that, for					
2A.	2A. $n>1, P_n^*=P_n-P_{n-1}$. Generalize this result to find the formula for the					
	number of partitions of n without part of size k .	4 Marks				
	Show that the proportion of permutations of symbols $\{1, 2, 3,, n\}$ which does					
2B.	not contain i in the i^{th} place is approximately $\frac{1}{e}$.	3 Marks				
	For $n=5$ and marks 1,2,3,4,5 with initial permutation 12345, obtain the 43^{rd}					
2C.	and 107th permutations in					
	a) Lexicographical order					
	c) Fike's order.	3 Marks				
3A.	Given distance matrix of the network, using Dijkstra's algorithm, find the	4 Marks				

Reg. No.					

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

RED BY	UFE (A Constituent institute of Mainpar University)	(a)	
	shortest weighted path from C to all other vertices.		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Distance matrix = $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\mathbf{E} \left[\infty \infty \infty \infty 0 5 \right]$		
•	F[11 ∞ ∞ 9 4 0]		
3B.	Prove that a graph is bipartite if and only if all its cycles are even.	3 Marks	
3C.	Show that a (p,q) -graph G is a tree if and only it is connected and		
	p=q+1.	3 Marks	
4A.	Show that the following premises are inconsistent.		
	(i). If Jack misses many classes through illness, then he fails high school.		
	(ii). If Jack fails high school, then he is uneducated.		
	(iii). If Jack reads a lot of books, then he is not uneducated.(iv). Jack misses many classes through illness and reads a lot of books.	4 Marks	
4B.	Show that subgroup of a cyclic group is again cyclic.	3 Marks	
4C.	Show that any group with at most five elements is abelian.	3 Marks	
5A.	Prove that $(\exists x) (P(x) \land Q(x)) \Rightarrow (\exists x) P(x) \land (\exists x) Q(x)$ and with		
	justification show that the converse is not true.		
5B.	Show that number of partitions of n with at most k part is same as the number		
JD.	of partitions of n with no part greater than k . Hence get an expression for		
	number of partitions of n with exactly k parts.		
5C.	Let G be a group and H be subgroup of G. Then prove that any two right co-sets		
	of H in G are either identical or disjoint.	3 Marks	