

MANIPAL INSTITUTE OF TECHNOLOGY

A Community Institution of Manipal University

III SEMESTER B.TECH. (CS/ICT/CC- ENGINEERING)

END SEMESTER MAKE UPEXAMINATIONS, JAN 2017

SUBJECT: ENGINEERING MATHEMATICS III [MAT 2105]

REVISED CREDIT SYSTEM (11/11/2015)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1A.	Let $E(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_1 \land x_3) \lor (\overline{x_2} \land x_3)$ be a Boolean expression over the two-valued Boolean algebra. Write $E(x_1, x_2, x_3)$ in both DNF and CNF.	4 Marks
1B.	In a Boolean lattice (A, \leq) , for any elements $a, b \in A$, prove that (i) $\overline{a \wedge b} = \overline{a} \vee \overline{b}$ (ii) $\overline{a \vee b} = \overline{a} \wedge \overline{b}$.	3 Marks
1C.	If the meet operation is distributive over the join operation in a lattice, then prove that the join operation is also distributive over the meet operation.	3 Marks
2A.	Prove that the number of partitions of n in which no integer occurs more than twice as a part is equal to the number of partitions of n into parts not divisible by 3.	4 Marks
2B.	For $n = 5$ and marks 1,2,3,4,5 with initial permutation 12345, obtain the 35 th and 100 th permutations in a) Lexicographical order b) Fike's order.	3 Marks
2C.	Find the r-digit number of ternary sequences with digits 0, 1, 2, that contains at least one 0, at least one 1, and at least one 2.	3 Marks
3A.	In the following network, find the shortest distance to the vertices A, C, D, E from B using Dijkshtra's Algorithm.	4 Marks

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

ALL S	MANIPAL INSTITUTE OF TECHNOLO	GY
	$A \xrightarrow{7} B \xrightarrow{5} C$	
3B.	Show that, if diameter of \overline{G} is greater than or equal to 3 then diameter of \overline{G} is less than or equal to 3. Hence show that diameter of a self-complementary graph is either 2 or 3.	3 Marks
3C.	Show that a graph G is a tree if and only if between every pair of vertices there exists a unique path.	3 Marks
4A.	If A works hard, then either B or C will enjoy themselves. If B enjoys himself, then A will not work hard. If D enjoys himself, then C will not enjoy himself. Therefore, if A works hard, then D will not enjoy himself. Show that these statements constitute a valid argument.	4 Marks
4B.	Show that the number of partitions of n is equal to the number of partitions of $2n$ which have exactly n parts.	3 Marks
4C.	Prove that a nonempty subset H of a group $(G, *)$ is a subgroup of G if and only if $a * b^{-1} \in H$ for every $a, b \in H$.	3 Marks
5A.	Show that from $(\exists x)[F(x) \land S(x)] \rightarrow (\forall y)[M(y) \rightarrow W(y)]$ and $(\exists y)[M(y) \land \neg W(y)]$ the conclusion $(\forall x)[F(x) \rightarrow \neg S(x)]$ follows.	4 Marks
5B.	Show that every group of prime order is abelian.	3 Marks
5C.	Prove that, any two left cosets of H in G have same number of elements.	3 Marks