		Reg. No.							
महाल राह्य			-	-	-	•			ENCOULEDOR IS POWER
Manipal	Manipal Institute			-		ni	pa	I	

(A Constituent Institute of Manipal University)

III SEMESTER B.TECH (CS/ICT/CC- ENGINEERING) END SEMESTER EXAMINATION, NOVEMBER - DECEMBER 2016

SUBJECT: ENGINEERING MATHEMATICS III [MAT 2105]

REVISED CREDIT SYSTEM

Time: 3 Hours

INSPIRED BY LIFE

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- All the questions carry (4+3+3) marks.

1A.	Let $E(x_1, x_2, x_3) = (\overline{x_1 \wedge x_2}) \lor (\overline{x_2} \wedge x_3)$ be a Boolean expression over the two- valued Boolean algebra. Write $E(x_1, x_2, x_3)$ in both DNF and CNF.	4 Marks
1B.	Let (A, \leq) be a distributive lattice. Show that, if $a \wedge x = a \wedge y$ and	
	$a \lor x = a \lor y$ for some $a \in A$, then $x = y$.	3 Marks
10	Show that a lattice (A, \leq) is distributive if and only if for any element a, b, c in	
1C.	$A, (a \lor b) \land c \leq a \lor (b \land c).$	3 Marks
	Let P_n be the unrestricted partitions of n , and P_n^* be the number of partitions	
2A.	of n without unit parts. Using generating function or otherwise show that, for	
	$n > 1$, $P_n^* = P_n - P_{n-1}$. Generalize this result to find the formula for the	
	number of partitions of n without part of size k .	4 Marks
an	Show that the proportion of permutations of symbols $\{1, 2, 3,, n\}$ which does	
2B.	not contain i in the i^{th} place is approximately $\frac{1}{e}$.	3 Marks
20	For $n = 5$ and marks 1,2,3,4,5 with initial permutation 12345, obtain the 43 rd	
2C.	and 107 th permutations in	
	a) Lexicographical order	
	b) Fike's order.	3 Marks
3A.	Given distance matrix of the network, using Dijkstra's algorithm, find the	4 Marks
1		

तालं यहा	Reg. No. No. Manipal Institute of Technology, Manipal	Executions			
ED BY L	IFE (A Constituent Institute of Manipal University)	Sal Con			
	shortest weighted path from C to all other vertices.				
	$Distance matrix = \begin{bmatrix} A & B & C & D & E & F \\ A & 0 & 5 & 6 & \infty & 17 & \infty \\ B & 3 & 0 & 4 & \infty & \infty & 7 \\ C & \infty & \infty & 0 & 6 & \infty & 11 \\ D & 11 & \infty & 7 & 0 & 9 & 4 \\ E & \infty & \infty & \infty & \infty & 0 & 5 \\ F & 11 & \infty & \infty & 9 & 4 & 0 \end{bmatrix}.$				
3B.	Prove that a graph is bipartite if and only if all its cycles are even.	3 Marks			
3C.	Show that a (p,q) -graph G is a tree if and only it is connected and				
	p = q + 1.	3 Marks			
4A.	Show that the following premises are inconsistent.				
	(i). If Jack misses many classes through illness, then he fails high school.				
	(ii). If Jack fails high school, then he is uneducated.				
	(iii). If Jack reads a lot of books, then he is not uneducated.				
	(iv). Jack misses many classes through illness and reads a lot of books.	4 Marks			
4B.	Show that subgroup of a cyclic group is again cyclic.				
4C.	Show that any group with at most five elements is abelian.				
5A.	Prove that $(\exists x) (P(x) \land Q(x)) \Rightarrow (\exists x) P(x) \land (\exists x) Q(x)$ and with				
	justification show that the converse is not true.	4 Marks			
	Show that number of partitions of n with at most k part is same as the number				
5B.	of partitions of n with no part greater than k . Hence get an expression for				
	number of partitions of n with exactly k parts.	3 Marks			
5C.	Let G be a group and H be subgroup of G. Then prove that any two right co-sets				
	of H in G are either identical or disjoint.	3 Marks			