

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

III SEMESTER B.TECH. (COMPUTER SCIENCE AND ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: SWITCHING CIRCUITS AND LOGIC DESIGN [CSE 2102]

REVISED CREDIT SYSTEM (25/11/2016)

Time: 3 Hours

MAX. MARKS: 50

4M

4M

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.
- 1A. Use K-map to obtain the simplest SOP and POS expressions for the function $f(a,b,c,d)=\pi M(2,6,7,10,11,13,14,15)$. Design the minimum cost NAND circuit for this function. What is the minimum cost? Assume that input variables are available in uncomplemented form only.
- 1B. Derive the simplest SOP expression for the following function using Boolean Algebra.

$$f(a,b,c,d,e) = a'c'e' + a'c'd' + a'de + ab'c'e$$

1C. For the timing diagram in Figure Q1C., write the truth table and synthesize the function f (x_1, x_2, x_3) in the simplest SOP form using K-map. Also write the essential prime implicants.

2A. i) Design a four bit adder/subtractor and explain its operation. What do you mean by arithmetic overflow? Write the expression which indicates arithmetic overflow for n-bit addition.

2B.	 ii) If A = A₇A₆A₅A₄A₃A₂A₁A₀ is an 8-bit unsigned number then 2A = A₇A₆A₅A₄A₃A₂A₁A₀0. Use this concept to design a circuit that multiplies an 8-bit unsigned number by 3, using single 9-bit ripple carry adder. Explain its operation. Design a combinational circuit that adds one to a 4-bit binary number, A₃A₂A₁A₀ using half adders. Write the Verilog code for your design using vectors. Use half 	(3+2)M
	adder module in your code.	3 M
2C.	Design a counter with T Flip Flops that repeats the binary sequence 0, 1, 3, 5, 7. Treat unused states as don't care conditions.	2M
3A.	Apply shannon's expansion to the following function with respect to <i>a</i> , <i>d</i> and implement using only 4 to 1 multiplexers. f(a,b,c,d,e) = a'b'd'e' + ab + ac + ad + cde Write the Verilog code for 4 to 1 multiplexer using conditional operator and using this module write the Verilog code for your design.	4 M
3B.	Write the truth table for BCD to 2421 code converter. Design this code converter using 2 to 1 multiplexers and other necessary gates	4 M
3C.	A combinational circuit is specified by the following three Boolean functions. Implement the circuit with 3 to 8 decoder and other necessary gates. Minimize the number of inputs to the gates. $F1(A,B,C) = \sum m(2,4,7)$ $F2(A,B,C) = \sum m(0,3)$ $F3(A,B,C) = \sum m(0,2,3,4,7)$	
	Write Verilog code for your design. Use case statement.	2M
4A.	Design a sequential circuit with two JK Flip Flops, A and B, and two inputs E and x. If E=0, the circuit remains in the same state regardless of the value of x. When E=1 and x=1, the circuit goes through the state transitions from 00 to 01 to 10 to 11 back to 00 and repeats. When E=1 and x=0, the circuit goes through the state transitions from 00 to 11 to 10 to 01 back to 00 and repeats.	5M
4B.	With the help of a neat diagram, explain the working of positive edge triggered D Flip Flop for all cases of D and clock inputs. What do you mean by set up time and hold time?	3M
4C.	Draw the circuit for a 4-bit Ring counter using a counter and a decoder. Write the count sequences and draw the timing signals generated.	3M 2M
5A.	What is a tri state buffer? Explain its types and one application.	5M
5B.	Explain CMOS realization of NAND and AND gates with necessary circuit diagrams.	3M
5C.	Implement the following functions using PLA. Use minimum no. of AND gates and OR gates with minimum inputs. $F1(A,B,C)=\sum m(3,4,6,7)$ $F2(A,B,C)=\sum m(0,1,3,4)$	2M