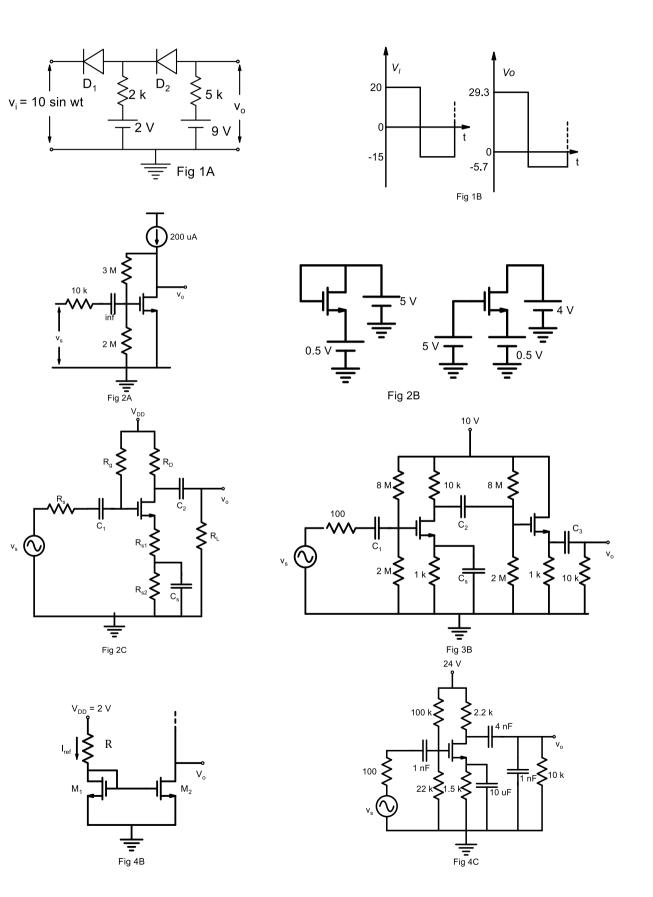
Reg. No.

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)


END SEMESTER EXAMINATIONS NOV/ DEC 2016

SUBJECT: ANALOG ELECTRONIC CIRCUITS [ELE 2105]

REVISED CREDIT SYSTEM

Time:	3 Hours Date:	06 December 2016	MAX. MAF	RKS: 50
Instructions to Candidates:				
	 Answer ALL the questions. 			
	 Missing data may be suitably as 	sumed.		
1A.	Plot the output waveform and tr Assume V_D =0.3V.	ansfer characteristics for the circuit shown	in Fig. 1A.	(04)
1B.	Analyze the waveforms shown in Fig. 1B and obtain the suitable diode based circuit V_D =0.7V.		iit. Assume	(03)
1C.	a supply whose voltage varies be	yed to provide a constant output voltage of V_L = etween 11 V and 13.6 V. The load resistance ng I_{zmin} = 0.1 times I_{zmax} , determine the power esistor employed.	may vary	(03)
2A.	For the circuit shown in Fig. 2A, $\mu_n C_{ox}(W/L) = 2 \text{ mA}/V^2$.	letermine the value of V_{GS} , V_{DS} and $g_{\text{m}}.$ Given V	$V_{\rm th} = 0.5 {\rm V}$,	(04)
2B.	Determine the region of operation $V_{\rm th}$ = 0.4 V.	of MOSFET in each of the circuit shown in Fig. 2	B, Assume	(02)
2C.	For the circuit shown in Fig. 2C, ob	tain an expression for small signal voltage gain	$\frac{V_o}{V_s}$. Hence	
	draw the small signal model.			(04)
3A.	Find the bandwidth of three cascaded identical amplifiers, with each of them having 500 Hz as low cut off frequency and 25 kHz as upper cut off frequency. Also, draw the frequency response of cascaded amplifiers in comparison with single stage amplifier.		(03)	
3B.	Determine the small signal voltage shown in Fig.3B. Assume $g_{m1} = g_{m2}$	gain and output resistance of the cascaded amp = 1 mA/V^2 , $\kappa = 0$.	olifier	(05)
3C.	Find the transconductance and W/L=20, I_{DSAT} =1.5mA.	V_{GS} of n channel MOSFET. Vth=0.6V. ($\mu_n c_{os}$	e)=60µA/V,	(02)
4A.	frequency is 5 V/V. The parameter V_{DD} = 1.8 V. In this circuit, if an R_S =	rce amplifier circuit, maximum voltage gain a s are: $\mu_n C_{ox} = 100 \ \mu A/V^2$, $V_{th} = 0.5 \ V$, (W/L) = 10 = R_D is added, find the voltage gains across R_D a), $V_{GS} = 1 V$, nd R_S with	
		Ience comment on the nature of these gains obt		(04)
4B.		and resistance R in the circuit shown in Fig. 4B M_1 and M_2 as identical and $\mu_n C_{ox}$ =90 $\mu A/V^2$, V_{th}		(03)
4C.	Determine the lower and upper cut	off frequencies for the circuit shown in Fig. 4C.		(03)
5A.	With a neat circuit and diagram an transformer coupled class A power	nd necessary waveforms, obtain maximum effi amplifier.	ciency of a	(03)

- 5B. For a class B amplifier providing a 18-V peak signal to a 16 Ω load and a power supply of $V_{DD}=|V_{SS}|=24$ V, determine the input power, output power and circuit efficiency. (03)
- For the MOS Differential pair derive expression for CMRR. Also explain the importance of 5C. (04) Active load with the help of relevant circuit diagram.

