Reg. No.

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKEUP EXAMINATIONS, DEC 2016 - JAN 2017

SUBJECT: ELECTROMAGNETIC THEORY [ELE 2104]

REVISED CREDIT SYSTEM

Time	e: 3 Hours Date: 04	January 2017	Max. Marks: 50
Instructions to Candidates:			
	✤ Answer ALL the questions.		
	 Missing data may be suitably assumed. 		
	 Graph sheets shall be supplied, if requir 	ed	
1A.	State Coulomb's law of electrostatic force A point charge $Q_1 = 10\mu C$, is located at at $P_2(1,2,10)$. Find the vector force e coordinates of P_3 where a point charge Q	e of attraction/repulsion. $P_1(1,2,3)$ in free space, while Q_2 xerted on Q_2 by Q_1 . Also deter $_3$ experiences no force.	= -5μC is rmine, the (03)
1B.	With neat diagram, derive the expressi- situated above a uniformly charged circu of ' σ C/m ² '.	on for the electric field intensity lar disc along its axis having a cha	at a point rge density
10	Further, deduce the electric field intensit same charge density.	y for the disc to be infinitely long	having the (03)
10.	In free space, let $Q_1 = 10nC$ be at $P_1(0, -$	-4,0), and $Q_2 = 20nC$ be at $P_2(0,0)$),4).
	• Determine the electric field intens	sity at the origin.	
	• Where should a 30 <i>nC</i> point charge is zero at the origin?	e be located so that the electric fiel	ld intensity (04)
2A.	Let $\rho_v = 8z(1-z)C/m^3$ for $(0 < z < 1m)$ zero for $(z > 1)$.), $\rho_v = 8z(1+z)C/m^3$ for $(-1 < $	z < 0) and
2B.	 Determine the electric flux density Plot the variation of D_z vs 'z', for(A perfect dielectric (ε_{r1} = 2.5) fills the r characterized by (ε_{r2} = 4). For an electron Determine: 	everywhere. -2 < z < 2m) (use the graph shee region 1 ($z < 0$) while the region 1 tric field $E_1 = -30a_x + 50a_y + 50a_y$	et) (03) 2 (z> 0) is 70 a _z V/m,
2C.	• The electric flux density D_2 • The angles θ_1 and θ_2 . Let the vector E_2 make an angle of $\theta_2 < 9$ 90° is the angle E_1 makes with the normal A parallel plate capacitor has a plate sep air only between the plates is 'C'. When a ' ϵ_R ' is placed on the bottom plate, the cap C_1	0^0 with the normal to the surface al to the surface. Daration distance of 't'. The capaci- slab of thickness 't ₁ ' and relative p pacitance is 'C ₁ '. Show that – $\epsilon_R * t$	while $\theta_1 <$ (03) itance with ermittivity
	$\frac{1}{C} = \frac{1}{t_1}$	$+\epsilon_R(t-t_1)$	(04)

3A. State Biot-Savart's law for determination of the magnetic field due to a current element.

With a neat diagram derive an expression for the magnetic field intensity, at the center of a circular wire having radius 'a' and carrying a current 'I' in the anti-clockwise direction. Consider the circular loop to be on the XY-plane.

3B. With a neat diagram, state stoke's theorem. Let a certain magnetic field intensity in free space be given as:

$$H = \frac{20(x)a_x + 20(y)a_y}{(x^2 + y^2)} A/m$$

Show that $\nabla B = 0$. Also determine the current density.

- 3C. With neat diagram, derive and explain the expressions for the induced electro motive force where the magnetic flux through a circuit changes with time and the circuit is in motion as well.(04)
- **4A.** There exists a boundary between two magnetic materials at z = 0 having permeabilities $\mu_1 = 4\mu_0$ H/m and $\mu_2 = 7\mu_0$ H/m for region 1 (z > 0) and region 2 (z < 0) respectively. For a field $B_1 = (2a_x 3a_y + 2a_z)mT$ in region 1, determine the flux density B_2 in region 2. Also determine the angle made by B_2 with the normal to the interface.
- **4B.** With a neat diagram, explain and derive a suitable expression for the self-inductance of a coaxial line with a solid inner conductor. Assume the radius of the inner conductor to be 'a'.
- **4C.** A stationary 10 turn square coil of 1 meter side is situated with its lower left corner co-incident with the origin. The sides x_1 and y_1 are along the X and Y axes respectively. If the magnetic flux density is normal to the plane of the coil and has its amplitude given by:

$$|B| = \sin\left(\frac{\pi x}{x_1}\right) \sin\left(\frac{\pi y}{y_1}\right) T$$

Determine the r.m.s value of the emf in the coil for a co-sinusoidal harmonic variation of the magnetic flux density at a frequency of 1KHz. **(04)**

- **5A.** A wave propagating in a lossless dielectric has the components $E = 500 \cos(10^7 t \beta z) a_x V/m$ and $H = 1.1 \cos(10^7 t \beta z) a_y A/m$. If the wave is travelling at a velocity of $1.5 \times 10^8 m/s$, determine:
 - The relative permittivity and relative permeability of the dielectric medium.
 - The phase constant of the wave.
 - The wavelength of the propagating wave.
 - The intrinsic impedance of the dielectric medium.
- **5B.** A 30 GHz radar signal may be represented as a uniform plane wave in a sufficiently small region. Calculate the wavelength and the attenuation constant if the wave propagates in a non-magnetic medium for which:
 - $\varepsilon_R = 1$ and $\sigma = 0$
 - $\varepsilon_R = 1.01 \text{ and } \sigma = 10^{-3} \text{V/m}$
 - $\varepsilon_R = 2.1 \text{ and } \sigma = 5 \Im/m$
- 5C. From the fundamentals, with neat sketch, prove that, as per Poynting's theorem, the net power flowing out of a given volume is equal to the time rate of decrease in the energy stored within that volume minus the ohmic losses. (04)

(03)

(03)

(03)

(03)

(03)

(03)