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III SEMESTER B.TECH. (E&C/EE/ICE/BM ENGINEERING)                                        

MAKEUP EXAMINATIONS, DEC. 2016 

SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2102] 

REVISED CREDIT SYSTEM 
(28/12/2016) 

Time: 3 Hours                                         MAX. MARKS: 50 

 
 
 
 
 
 

1A. 

Find the half range Fourier cosine series expansion of  
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 Also draw the graph of corresponding periodic 

extension of f(x). 

3 

1B. 

Find the Fourier transform of  
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1C. 

Expand  2( ) , ( 2 ) ( )f x x x l x l f x l f x       ,  as a Fourier series and 

hence evaluate 
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2A. Find the Fourier sine transform of 1 ,0 1ax a    , and hence find 
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2B. Find the analytic function f(z) = u+iv for which ( cos sin )xu e x y y y   3 

2C. 
(i) Find all possible expansion of 
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 about z = 0. 

    (ii) Expand f(z) = z ez  about z = 1. 
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3A. 

If f(z) = u + iv  is  analytic function of z ,  show that  
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Instructions to Candidates: 

 Answer ALL the questions. 
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3B. Evaluate 
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3C. State and prove the  Green’s theorem . 4 

4A. 
Find the angle between the surfaces  xy2z = 3x+z2  and   3x2-y2+2z =1 at 

the point (1,-2,1). 
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4B. 

Show that 2 2F (2xzcosy y 2)i (x x zsiny z)j (x cosy y 3)k         is 

conservative. Find its scalar potential and find the work done by F  in 

moving a particle in this force field from (1, 0, 2) to  2,  ,  1
2
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. 

 

3 

4C. 

Verify Stoke’s theorem for    2 2 ˆˆ ˆA (2x y)i yz j y zk  where S is the 

upper half surface  of the sphere 2 2 2 1x y z   and C is its boundary. 
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5A. Solve 2 0xx xy yyu u u    using the transformations v = x, z = x + y . 3 

5B. 

Assuming the most general solution, solve the one dimensional wave 

equation 2
tt xxu c u  in a  string of length π whose ends are fixed, starts 

vibration with zero initial velocity and the initial deflection is               

f(x) = 2sin2x-4sin3x, 0< x < π.  

3 

5C. 
Derive the one dimensional heat equation using Gauss divergence 

theorem. 
4 

 

 


