Der Me					
Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University THIRD SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION NOV/DEC 2016 SUBJECT: ANALOG ELECTRONIC CIRCUITS (ECE - 2101)

T	TA/E. 2	HOURS	

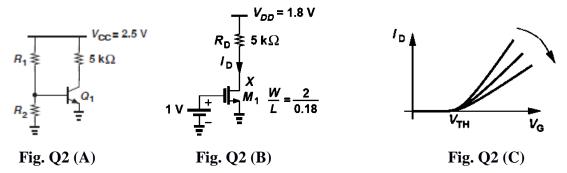
MAX. MARKS: 50

Instructions to candidates:

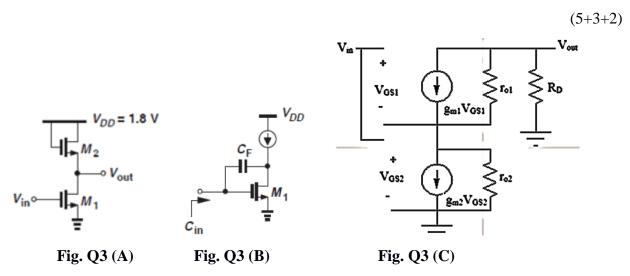
- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. Design a single stage amplifier which gives a voltage gain of 5 without any change in the phase of the signal and an input impedance of 100 Ω . Assume β =100, V_{CC}=2.5V, Is=10⁻¹⁶A, V_A= ∞ and operating frequency of 700MHz.
- 1B. In the circuit of Fig. Q1 (B), β =100 and V_A= ∞ . Calculate the value of I_S such that the base-collector junction is forward biased by 200mV.
- 1C. A voltage dependent current source is constructed with K=20mA/V. What value of load resistance in Fig. Q1 (C) is necessary to achieve a voltage gain of 15?

$$R_{c} \neq 9 \text{ k}\Omega \qquad + \qquad - \downarrow V_{cc} = 2.5 \text{ V}$$

$$R_{p} \neq 1 \text{ k}\Omega \qquad V_{in} \qquad + \qquad + \qquad V_{1} \qquad V_{1} \neq R_{L} \qquad V_{out}$$

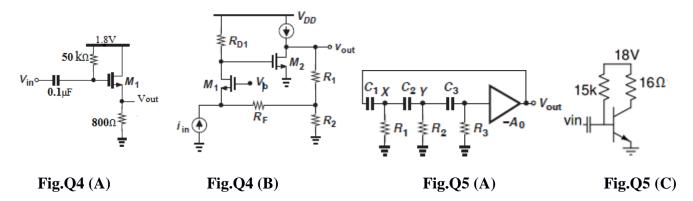

- 2A. The circuit of Fig. Q2 (A) must be designed for an input impedance of greater than $10k\Omega$ and a g_m of at least $1/(260\Omega)$. If $\beta=100$, $I_S=2\times10^{-17}$ A, and $V_A=\infty$, determine the minimum allowable values of R_1 and R_2 . If the design is to be repeated for a g_m of at least $1/(26\Omega)$, show that no solution exists.
- 2B. In Fig. Q2 (B), calculate the bias current of M₁. Assume $\mu_n C_{ox} = 100\mu A/V^2$ and $V_{TH} = 0.4V$. Verify if the device is operating in saturation. If the gate voltage increases by 10mV, what is the change in the drain voltage? Determine the value of W/L that places M₁ at the edge of saturation. Calculate the drain voltage change for a 1mV change at the gate.
- 2C. In the I_D–V_G plot of Fig. Q2 (C), the arrow indicates (i) Decreasing channel length 'L' (ii) Decreasing oxide thicknesses 't_{ox}' (iii) Increasing channel width 'W'. Identify the correct statements. Correct the statements which are incorrect.

(5+3+2)


(5+3+2)

ECE -2101

Page 1 of 3



- 3A. For the amplifier circuit shown in Fig. Q3 (A), neglecting channel length modulation, derive the expression for the voltage gain. Assuming a power budget of 1mW and an overdrive voltage of 200mV for M₁, design the circuit for a voltage gain of 4.
- 3B. Using Miller's theorem, determine the input capacitance of the circuit shown in Fig. Q3 (B). Assume $\lambda > 0$.
- 3C. Construct the MOSFET circuit using the small signal model shown in Fig. Q3 (C). Is your solution unique?

- 4A. Analyze the circuit shown in Fig. Q4 (A) at low and high frequencies and plot its frequency response. The circuit is connected to a load capacitance of 10pF. Assume C_{GS}=250fF, C_{GD}=80fF, C_{DB}=100fF, λ =0, V_{GS}=0.8V, V_{TH}=0.5V and $\mu_n C_{ox} = 100\mu A/V^2$.
- 4B. Determine the closed loop gain, I/O impedances of the circuit shown in Fig. Q4 (B).
- 4C. Prove that negative feedback improves the bandwidth of the system.

(5+3+2)

- 5A. Determine the oscillating frequency of RC phase shift oscillator shown in Fig. Q5 (A).
- 5B. Determine the power efficiency of class B push pull amplifier and list its merits and demerits.
- 5C. For the circuit shown in Fig. Q5 (C), if the input signal has a peak current of 1 mA, determine the power efficiency. Assume β =50.

(5+3+2)