Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University THIRD SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION - NOV/DEC 2016 SUBJECT: ANALOG ELECTRONICS CIRCUIT (ECE - 2101)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer ALL questions.Missing data may be suitably assumed.
- 1A. Design an emitter follower amplifier with a voltage gain of 0.8, input impedance of 10k Ω and emitter resistance of 20 Ω . Assume β =100, V_{CC}=2.5V, Is=10⁻¹⁶A, V_A= ∞ .
- 1B. Assume $I_S=2\times10^{-17}$ A, $V_A=\infty$, $V_{BE}=0.8V$ and $\beta = 100$ in Fig. Q1 (B). What is the maximum value of R_C if the collector-base must experience a forward bias of less than 200mV?
- 1C. A transistor with $I_S=6\times10^{-16}$ A must provide a trans conductance of $1/(13\Omega)$. What base-emitter voltage is required?

(5+3+2)

- 2A. Design the degenerated stage of Fig. Q2(A) with a voltage gain of 10 with Q₁ operating at the edge of saturation. Calculate the bias current and the value of R_C if $\beta = 100$, I_S=5×10⁻¹⁶A, and V_A=∞. Calculate the input and output impedance of the circuit.
- 2B. In Fig. Q2(B), identify the region in which the MOSFET operates
- 2C. Determine R_{in} and R_{out} for the circuit in Fig. Q2(C). Do not neglect Channel Length Modulation.

ECE -2101

Page 1 of 2

- 3A. Design the CS stage shown in Fig. Q3(A) for a voltage gain of 5, an input impedance of 50k Ω , and a power budget of 5mW. Assume $\mu_n C_{ox} = 100 \mu A/V^2$, $V_{TH} = 0.5V$, $\lambda = 0$, and $V_{DD} = 1.8V$. Also, assume a voltage drop of 400mV across R_S.
- 3B. Determine the pole frequency for the circuit shown in Fig. Q3(B). Consider all possible junction capacitors and neglect channel length modulation
- 3C. For the circuit in Fig. Q3(C), obtain an expression for the voltage gain.

(5+3+2)

- 4A. Find the closed loop gain, I/O resistances of the circuit shown in **Fig. Q4**(**A**).
- 4B. Determine the polarity of feedback for the circuit shown in Fig. Q4(B).
- 4C. Determine the transfer function of a first order low pass filter using RC network and plot the frequency response.

$$(5+3+2)$$

- 5A. Derive the oscillating frequency of a Collpitts oscillator.
- 5B. Determine the power efficiency of Class A amplifier and explain how it can be improved in Class B amplifier.
- 5C. List the different classes of power amplifiers and mention their features.

(5+3+2)