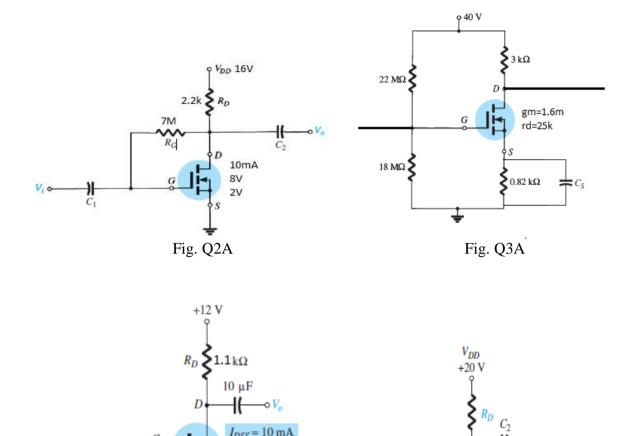


MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL nt Institution of Manipal University

THIRD SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) **END SEMESTER EXAMINATIONS, NOV/DEC 2016**

SUBJECT: ANALOG ELECTRONIC CIRCUITS [ICE 2104]


Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	Plot the transfer characteristics of a E-MOSFET indicating its salient features	3
1B.	With the constructional schematic of an n-type JFET explain its V-I characteristics.	4
1C.	List the advantageous of FET over BJT	3
2A.	For the circuit shown in Fig. Q2A compute the biasing parameters I_{DQ} , V_{DSQ} , V_{GSQ} ,	3
	V _D , V _S	
2 B .	Derive the biasing conditions for a common gate circuit.	3
2C.	For the source follower circuit derive the expression for input impedance, output	4
	impedance, and gain considering the effect of signal and load resistance	
3A.	For the circuit shown in Fig. Q3A compute the input impedance, output impedance,	4
	and gain.	
3B.	Compute the input impedance, output impedance, and gain (with and without rd) for	4
	the circuit given in Fig. Q3B	
3C.	Compare voltage series feedback and current series feedback amplifiers	2
4A.	Plot the low frequency response for the circuit shown in Fig. Q4A	4
4B.	Analyze the high frequency characteristics of the fixed bias circuit.	3
4C.	Derive the expressions for input impedance, output impedance, and gain for a current	3
	shunt feedback amplifier	
5A.	Design a colpitts oscillator for the oscillatory frequency of 100kHz	3
5B.	Describe the working of RC phase shift oscillator	2
5C.	Discuss the working of Class B power amplifiers	2
5D.	Comment on frequency response characteristics of cascode circuits	3

*C*₁ ∦

0.1 µF

 ${}^{R_G}_{10\,\mathrm{M}\Omega}$

V; o

R_S

S

ξ1.1 kΩ

G

)| 10 μF

+

 $V_i = 40 \text{ mV}$

 $I_{DSS} = 10 \text{ mA}$ $V_p = -4 \text{ V}$

 $g_{os} = 50 \,\mu\text{S}$

ξ

╢

0.1 µF

ю V_o

 $\begin{cases} R_L \\ 10 \end{cases}$

 $I_{DSS} = 10 \text{ mA}$

 $V_p = -4 V$ $g_{os} = 20 \mu S$

10 MΩ

####