

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL A Constituent Institution of Manipal University

THIRD SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) **END SEMESTER EXAMINATIONS, NOV/DEC 2016**

SUBJECT: DIGITAL ELECTRONIC CIRCUITS [ICE 2103]

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	What are the advantages of digital systems over analog systems? What are the	2
	limitations of digital techniques?	
1B.	Design a combinational circuit that accepts a 3-bit BCD number and generates an	3
	output binary number equal to the square of the input number.	
1C.	Implement the function $f=[(AB) (C+D)]^{\dagger} + A$, using	5
	a) AOI logic b) NAND gates only c) NOR gates only.	
2A.	What are alphanumeric codes? Explain different types.	2
2B.	Draw the truth table and obtain the logic expression of a full subtractor. Implement it	3
	using logic gates.	
2C.	Design and implement a 4 bit binary to gray code converter.	5
3A.	Implement a 2 bit ripple counter using D flip flops.	2
3B.	Implement the function $F(a,b,c)=\sum m(1,3,5,6)$ using a multiplexer. Choose a and b as	3
	select inputs.	
3C.	Draw the logic diagram of master slave SR flip and explain its working.	5
4A.	What are shift registers? Draw the schematic of a 4 bit serial in parallel out shift	2
	register using D flip flops.	
4B.	Draw the logic diagram, timing diagram and truth table of a T flip flop.	3
4C.	Design a T counter that goes through states 0, 3, 5, 6, 0, 3 Is the counter self-	5
	starting?	
5A.	Draw the block diagram of a finite state model and explain briefly.	2
5B.	Implement the following Boolean functions using PAL with four inputs and 3-wide	3

AND-OR structure.

 $F_1(A,B,C,D) = \sum m(2,12,13)$ $F_2(A,B,C,D) = \sum m(7,8,9,10,11,12,13,14,15)$ $F_3(A,B,C,D) = \sum m(0,2,3,4,5,6,7,8,10,11,15)$

5C. Obtain state diagram and primitive flow table for a logic system with two inputs, x
5 and y, and one output, z, that satisfy the following conditions. Initially x=y=0, z=0. When x = 1 and y=0, then z=1. When x = 0 and y=1, z=0. The output remains in the previous state (no change) when x=y. The logic system has edge triggered inputs (no clock).