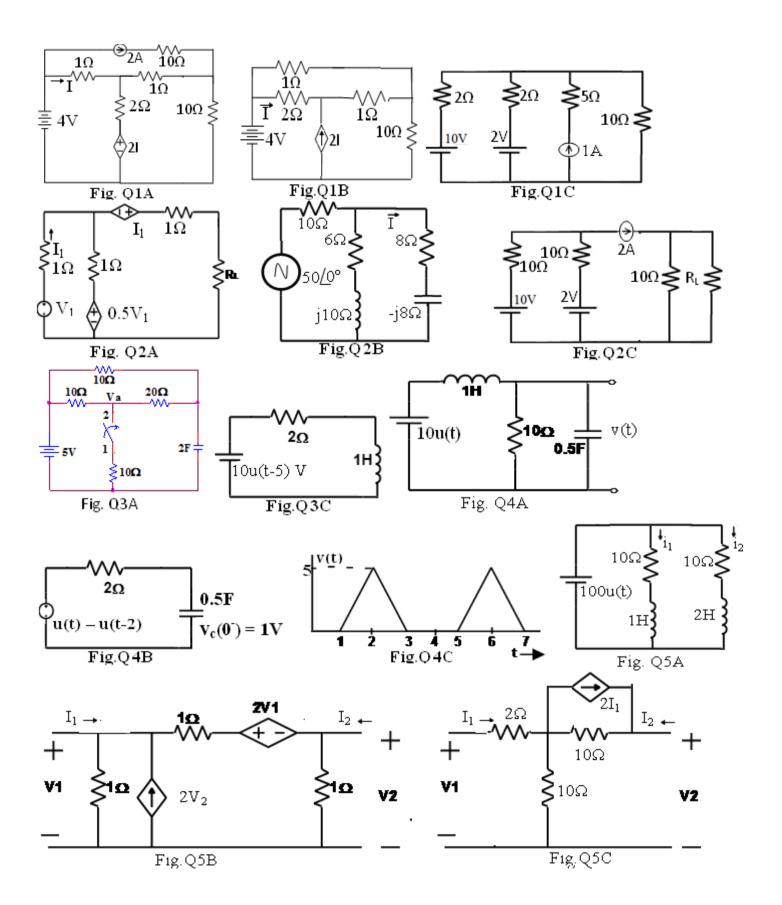


THIRD SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: ELECTRICAL CIRCUIT ANALYSIS [ICE 2101]

Time: 3 Hours MAX. MARKS: 50


Instructions to Candidates:

❖ Answer **ALL** the questions.

Missing data may be suitably assumed.

1A.	For the circuit shown in Fig.Q1A, determine the mesh currents.	5
1B.	determine the node voltages for the circuit shown in Fig.Q1B	3
1C.	For the circuit shown in Fig.Q1B, find the current in 10Ω resistor using superposition theorem.	2
2A.	Obtain Norton's equivalent for the circuit shown in Fig.Q2A, with respect to R _L .	5
2B.	In the circuit shown in Fig.Q2B, find current I and verify reciprocity theorem.	3
2C.	Obtain Thevinin's equivalent for the circuit shown in Fig.Q2C, with respect to $R_{\rm L}$	2
3A.	In the network shown Fig. Q3A, the switch is closed at t=0, a steady state having previously been attained. Determine $v_a(0^-)$ and $v_a(0^+)$.	5
3B.	A source of 100V with source impedance $5+j3$ and frequency 1000 Hz is connected to a load of capacitor C in series with 10Ω resistor. At what value of C, power in the 10Ω resistor is maximum? What is the power?	3
3C.	For the circuit shown in Fig.Q3C, find current in the circuit at 5 seconds.	2
4A.	For the circuit shown in Fig. Q4A, obtain expression for current in complementary and particular solution form.	5
4B.	Obtain expression for current in the circuit shown in Fig.Q4B.	3
4C.	Express the waveform shown in Fig. Q4C using basic signals and write the Laplace transform.	2
5A.	Use Laplace transform to find i1 and i2 in the circuit shown in Fig.Q5A	4
5B.	For the network shown in Fig.Q5B find Y parameters. Hence find Z parameters	4
5C	Find h parameters for the circuit shown in Fig O5C	2

ICE 2101 Page 1 of 2

ICE 2101 Page 2 of 2