

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

A Constituent Institution of Manipal University

III SEMESTER B.TECH. (E&C/EE/ICE/BM ENGINEERING)

END SEMESTER EXAMINATIONS, NOV. 2016

SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2102]

REVISED CREDIT SYSTEM (25/11/2016)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

1A.	Find the half range Fourier cosine series expansion of $f(x)=1-\frac{x}{l}, 0 < x < l$. Also draw the graph of corresponding periodic extension of f(x).	3
1 B .	Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & x \le 1 \\ 0, & x > 1 \end{cases} and hence evaluate \int_{0}^{\infty} \frac{\sin t - t \cos t}{t^3} dt.$	3
1C.	Expand $f(x) = x \sin x$, $0 \le x \le 2\pi$, $f(x+2\pi) = f(x)$ as a Fourier series and hence evaluate $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$.	4
2A.	Find the Fourier cosine transform of e^{-ax} , $a > 0$, and hence find $F_{S}\left\{\frac{x}{a^{2}+x^{2}}\right\}$	3
2B.	Find the analytic function $f(z) = u + iv$ for which $u = \frac{\sin 2x}{\cosh 2y + \cos 2x}$	3
2C.	(i) Find all possible expansion of $f(z) = \frac{z+4}{(z+3)(z-1)^2}$ about $z = -1$. (ii) Expand $f(z) = \sin 2x$ about $z = \pi/4$.	4
3A.	If $f(z) = u + iv$ is analytic function of z, show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)u^p = p(p-1)u^{p-2} f'(z) ^2$	3

Reg. No.		
----------	--	--

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

3B.	Evaluate $\oint_C \frac{z^2}{(z+1)^2(z^2+4)} dz$ where $C: z-2i =3$.	3
3C.	Verify Green's theorem for $\oint_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$ Where C is the boundary of the region defined by $x = 0$, $y = 0$ and $x + y = 1$.	4
4A.	Find the constants a and b so that the surface $ax^2 - byz = (a+2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point $(1, -1, 2)$.	3
4B.	Show that $\vec{F} = (y^2 \cos xy + z^3)\hat{i} + (\sin xy + xy \cos xy - 4z)\hat{j} + (3xz^2 - 4y)\hat{k}$ is conservative, find its scalar potential and work done in moving an object in this field from $(0, 1, -1)$ to $(\frac{\pi}{2}, -1, 2)$.	3
4C.	If f(r) is a differentiable function of $r = \vec{r} $ then show that $f(r)\vec{r}$ is irrotational. Find f(r) so that $f(r)\vec{r}$ is also solenoidal.	4
5A.	Evaluate $\bigoplus_{s} \vec{A} \cdot \hat{n} dS$ where $\vec{A} = 2x^2y\hat{i} - y^2\hat{j} + 4xz^2\hat{k}$ and \hat{n} , positive unit normal to Surface S of the region in the first octant bounded by $y^2 + z^2 = 9$ and $x = 2$.	3
5B.	Assuming the most general solution, solve the one dimensional heat equation $u_t = c^2 u_{xx}$ in a laterally insulated bar of length L whose ends are kept at zero and the initial temperature is $f(x) = \begin{cases} x, & 0 < x < L/2 \\ L-x, & L/2 < x < L \end{cases}$	3
5C.	Solve the partial differential equation $u_{tt} = c^2 u_{xx}$ using the transformations $v = x + ct$, $w = x - ct$ subject to the conditions $u(x,0) = f(x)$ and $u_t(x,0) = g(x)$.	4