Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

IIISEMESTER B.TECH (MECH/AUTO/AERO/IP/MT ENGINEERING) MAKEUP EXAMINATION

SUBJECT: ENGINEERING MATHEMATICS -III [MAT 2101]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitable assumed.

1A.	Find half range Fourier cosine series for the given function $f(x) = \begin{cases} \frac{1}{4} - x, & 0 \le x \le \frac{1}{2} \\ x - \frac{3}{4}, & \frac{1}{2} \le x \le 1 \end{cases}$	(4)
1B.	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, $0 < x < 1, t > 0$, $h = \frac{1}{3}$, $k = \frac{1}{36}$ with the initial condition $u(x,0) = \sin \pi x$ and boundary conditions $u(0,t) = u(1,t) = 0$. Compute for 2 time steps.	(3)
1C.	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the points (2, -1, 2).	(3)
2A.	Find Fourier cosine and sine transform of the function x^{a-1} , a>0 and deduce $\left\{\frac{1}{\sqrt{x}}\right\}$	(4)
2 B .	Solve $u_{xx} + u_{xy} - 2u_{yy} = 0$ using the transformation, $v = x + y$, $z = 2x - y$.	(3)
2C.	Solve $x^2y''+xy'+(x^2-3)y=0$, with the conditions $y(1)=0, y(2)=2$ and $h=0.25$.	(3)

Reg. No.					

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

3A.	Derive one dimensional heat equation with the physical assumptions made.				
3B.	With $h = \frac{1}{3}$, solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -81xy$, $0 < x, y < 1$ with the boundary conditions $u(0, y) = u(x, 0) = 0$ and $u(1, y) = u(x, 1) = 100$				
3C.	Find the constants a and b such that $\vec{F} = (axy + z^3)i + (3x^2 - z)j + (bxz^2 - y)k$ is irrotational and find its scalar potential ϕ .				
4A.	Solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$ where $h = 0.5, 0 < x < 2, t > 0$ and the conditions $u(x,0) = 0, u_t(x,0) = 100(2x - x^2)$ and $u(0,t) = u(2,t) = 0$ are by choosing for 4-time steps	(4)			
4B.	Prove that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$	(3)			
4C.	• Solve $x^2 u_x + y^2 u_y = 0$, by the method of separation of variables				
5A.	Verify Stokes theorem for the vector field $\vec{A} = (x^2 - y^2)i + 2xyj$ over a rectangular box bounded by the planes $x = 0, x = a, y = 0, y = b$ and $z = 0, z = c$ with face $z = 0$ is removed.	(4)			
5B.	Show that $\int_{0}^{\infty} \frac{\cos(\frac{s\pi}{2})}{1-s^{2}} \cos sx.ds = \begin{cases} \frac{\pi}{2} \cos x, & x < \frac{\pi}{2} \\ 0, & x > \frac{\pi}{2} \end{cases}$	(3)			
5C.	Obtain the constant term and the first 2 harmonics of Fourier series for y using the following table. $ \begin{array}{c cccccccccccccccccccccccccccccccc$	(3)			