Reg.No.											
---------	--	--	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

I SEMESTER B.TECH END SEMESTER EXAMINATIONS, Dec 2015-Jan 2016

SUBJECT: ENGINEERING CHEMISTRY [CHM 1001]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX.MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.
- ✤ Draw diagrams and write chemical equations wherever necessary
- **1A.** What are concentration cells? When do you expect maximum and minimum potential in concentration cells?
- **1B.** The standard Emf of the cell Fe | Fe³⁺ (1M) || Ag⁺ (1M) || Ag is 1.24 V. Write the anode, cathode and overall cell reactions. Also, calculate the cell potential of the following variations at 298K.

	$[Fe^{3+}]$	$[Ag^+]$
1	0.5 M	0.75 M
2	2 M	1 M
3	1 M	2 M

- **1C.** Explain the caustic embrittlement. Write any two prevention methods for the same. **2+3+5**
- 2A. Write any two differences between:(i) Electro and electro-less plating(ii) Galvanizing and tinning
- **2B.** Calculate ΔG , ΔH and ΔS at 30 °C, for the cell Al | Al³⁺ || Fe³⁺ | Fe from the following data. Emf of the cell at arbitrary concentration at 25 °C and 30 °C are 1.22 and 1.32 V respectively.
- **2C.** Write how the following method minimizes or prevents corrosion:
 - (i) Selection of proper material and proper design

2+3+5

- (ii) Inhibitors
- **3A.** With time-scale write the chemical reactions that takes place during setting of cement.

3B. Calculate number and weight average molecular weights of polypropylene sample from the following composition.

Degree of polymerization	200	400	600	750
% of composition	25	35	30	10

Given that atomic masses of C and H are 12 and 1 amu respectively.

- **3C.** Explain the batch melting process of manufacturing of glass. Discuss the applications of any two types of glass based on the property associated with it.
- **4A.** Give reason:
 - (i) We cannot use ordinary potentiometer while using glass electrode.
 - (ii) Pure silicon is a semiconductor whereas diamond is not.
- **4B.** Calculate the water-equivalent of the calorimeter from the following data. Also calculate GCV and NCV for the second and third fuel.

Sample	Initial	Final	Sample	Weight of	hydrogen	GCV
number	temp in	temp in	weight in	water taken	content	
	Κ	Κ	g	in g		
1	323	344	0.455	400	0.8 %	36.5 K cal / g
2	360	380	0.344	450	0.7 %	
3	360	380	0.344	450	2.1 %	

4C. Explain the construction and working of alkaline fuel cell and PEM fuel cell. Explain the differences between these cells.

2+3+5

2+3+5

- **5A.** Explain concentration polarization. Write two methods of minimizing it.
- **5B.** The coal sample (0.92 g) was burnt in a combustion tube. The weight of CO₂ and water released were 2.372 g and 0.316 g respectively. Assuming no other element present in the sample, calculate percentage of C, H and O in the sample.
- **5C.** Write the construction and working reactions of Li ion cells. Write any two merits and demerits of lithium metal.

2+3+5
