

Manipal Institute of Technology, Manipal

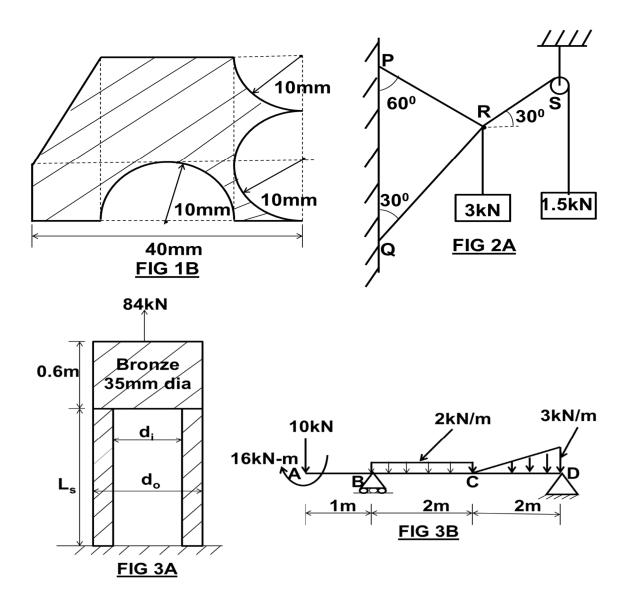
RNOWLEDGE IS POWER

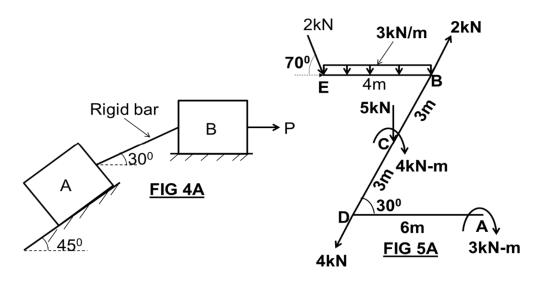
(A Constituent Institute of Manipal University)

I SEMESTER B.TECH END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: MECHANICS OF SOLIDS [CIE 1001]

REVISED CREDIT SYSTEM


Time: 3 Hours MAX. MARKS: 50


Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data if any, may be suitably assumed.

1A.	State and prove Varignon's theorem.	04
1B.	Calculate M.I of shaded portion about the vertical centroidal axis. (FIG. 1B).	06
2A.	If the system shown (FIG. 2A) is in equilibrium, determine forces in bars PR and QR. Neglect friction in the pulley 'S'	04
2B.	A 70 mm long block has a cross section of 50 mm x10 mm. The block is subjected to a force 60 kN (Tension) on the face (50mm x 10mm) and 110kN (Compression) on the face (70mm x 10mm). Determine the force to be applied on (70mm x 50mm) face such that there is no change in volume. Given E= 200 GPa, μ = 0.3.	06
3A.	A force of 84 kN is applied on a compound bar which is made of solid bronze bar 0.6 m long, 35 mm diameter (d_o) and a steel tube connected in series. Allowable stress for steel is 130 MPa. Taking E_b = 85 GPa, E_s = 210 GPa, determine i) Inner diameter (d_i) of steel tube. ii) Length (L_s) of the steel portion, such that the deformation in steel tube is 1.5 times that of bronze bar. (FIG 3A)	04
3B.	Draw SFD and BMD for the figure shown and locate the point of contraflexure if any. (FIG. 3B)	06
4A.	Find the horizontal force 'P' required to be applied to the block 'B' to just move the block 'A' in the upward direction. Assume angle of limiting friction as 15° for all contact surfaces. Given: weight of block A = 1000 N and weight of block B = 3000 N. (FIG. 4A).	06
4B.	Obtain a relationship between Young's modulus (E) and modulus of rigidity (G).	04
5A.	Determine magnitude and direction of the resultant of a given force system. Also locate the resultant with respect to point 'A'. (FIG. 5A)	06
5B.	Obtain expressions for Hoop stress, longitudinal stress and change in volume of thin cylinder subjected to an internal fluid pressure 'p'.	04

CIE 1001 Page 1 of 2

CIE 1001 Page 2 of 2