|--|

MANIPAL UNIVERSITY

THIRD SEMESTER B.S. (ENGG.) DEGREE EXAMINATION – DECEMBER 2015

SUBJECT: ELECTRONIC DEVICES AND CIRCUITS (EC 241)
(BRANCH: E&C/E&E)

(NEW SCHEME)

Monday, December 14, 2015

Time: 10:00 - 13:00 Hrs.

Max. Marks: 100

- Answer any FIVE full questions.
- Missing data if any may be suitably assumed.
- 1A. With a neat circuit diagram, explain the working of BJT as a switch.
- 1B. Explain the input / output characteristics of a NPN transistor and explain different region in the characteristics.
- 1C. Write short notes on Varactor diode and LED.

(6+8+6=20 marks)

- 2A. Explain the working of full wave bridge rectifier with circuit diagram and waveforms. Derive the expression for rms current, average current, ripple factor and efficiency.
- 2B. Explain the self-bias circuit and determine the expressions for the operating point. Perform the load line analysis for the same for variations in V_{CC} , I_B and R_C .

(10+10 = 20 marks)

- 3A. Explain the different resistances of a diode and derive its expression. Find the static and dynamic resistances of a germanium diode with 0.2 V forward bias applied, if reverse sat current is 1µA and temperature is 30°C.
- 3B. Explain the construction, working and characteristics of JFET. Sketch drain and transfer characteristics.
- 3C. In a transistor circuit, when the base current is increased from 0.32 mA to 0.48 mA, the emitter current increases from 15 mA to 20 mA. Find α_{ac} and β_{ac} values.

(8+8+4 = 20 marks)

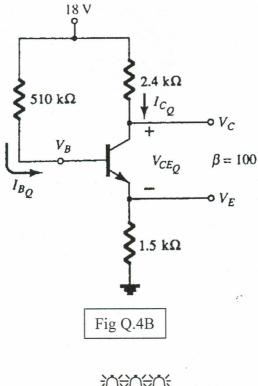
- 4A. Derive the expression for current gain of common emitter transistor amplifier with resistive load with the help of h parameter model.
- 4B. For the circuit shown in Fig Q4B, determine I_{BQ}, I_{CQ}, V_{CEQ}, V_C, V_E, V_B. Draw the load line.

(10+10 = 20 marks)

- 5A. Derive the expression for A_I, A_V, A_{Vs}, A_{Is}, R_i, and R_o of a transistor amplifier using h parameters.
- 5B. Explain in detail RC coupled Amplifier.

(10+10 = 20 marks)

- 6A. With the help of circuit diagram and expressions, explain load regulation and line regulation of voltage using Zener diode.
- 6B. Design a zener voltage regulator for the following specifications: Output voltage 5 V, input voltage (12 ± 3) V, load current 20 mA, zener maximum wattage 500 mW and minimum zener current 2 mA.


$$(10+10 = 20 \text{ marks})$$

- 7A. Explain enhancement and depletion type FET with their transfer characteristics.
- 7B. Derive the expression for the voltage gain of common-source amplifier with the help of FET low frequency model.
- 7C. Explain what is CMRR.

$$(8+6+6 = 20 \text{ marks})$$

- 8A. Explain the emitter follower circuit and write the equation for A_I, A_V, R_i and R_o.
- 8B. Explain the source self-bias with fixed bias circuit of FET.
- 8C. Explain any clipper and clamper circuit.

(6+6+8 = 20 marks)

