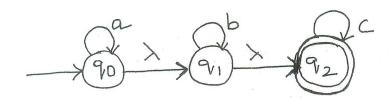
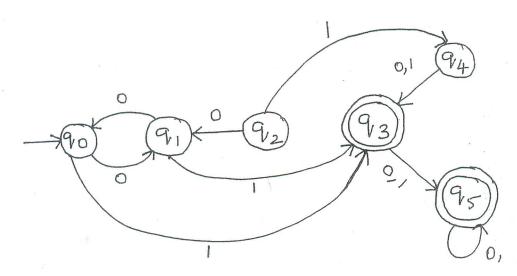
Mar		G	1	£ .		E 17		5	
Dog No		7				-			
reg. 140.	A			6.00	150	-	de.		

MANIPAL UNIVERSITY


THIRD SEMESTER B.S. (ENGG.) DEGREE EXAMINATION – DECEMBER 2015 SUBJECT: FORMAL LANGUAGES AND AUTOMATA THEORY (CS 233) (BRANCH: CE/CS)

Wednesday, December 16, 2015


Time: 10:00 - 13:00 Hrs.

Max. Marks: 100

- Answer any FIVE full questions.
- Missing data can be suitably assumed.
- 1A. Prove by mathematical induction that any binary tree of height 'n' can have at most 2ⁿ leaves.
- 1B. Convert the following NFA to DFA and Final state is q2:

- 1C. Draw a DFA to accept a strings of a's and b's with at most two consecutive b's. (Include transition table also).
- 1D. Minimize the states in the DFA given in the following diagram:

(4+6+5+5=20 marks)

- 2A. Obtain regular expressions for the following: L(R) = { w | w \in {0,1}* } with at least three consecutive 0's. To accept strings of a's and b's of length ≤ 10 .

 - iii) To accept strings of a's and b's starting with 'a' and ending with 'b'.
- 2B. Obtain a NFA which accepts strings of a's and b's starting with the string ab.
- 2C. Find L1/L2 for L1=L (a*baa*) and L2 = L (ab*).
- 2D. State and prove the theorem pumping lemma for regular languages.

((2+2+2)+4+6+4 = 20 marks)

- 3A. Find a simple grammar for the following:
 - $L = \{a^n b^n | n \ge 1\}$ i)
- ii) $L = \{ a^n b^{n+1} | n \ge 2 \}$
- 3B. Find the Context Free Grammar for the language:
 - i) L= $\{a^n ww^R b^n | w \in \{a,b\}^*\}, n \ge 1\}$ ii) L= $\{01(1100)^n 110(10)^n | n \ge 0\}$
- 3C. Is the following grammar ambiguous? (Use derivation tree)
 - $S \rightarrow aS \mid X$
 - $X \rightarrow aX \mid a$
- 3D. Obtain a right linear grammar for the following:

$$L= \{ a^n b^m | n \ge 2, m \ge 3 \}$$

((3+3)+(3+3)+5+3=20 marks)

- 4A. Eliminate λ , Unit and Useless productions from the following:
 - $S \rightarrow a \mid aA \mid B \mid C$
 - $A \rightarrow aB \mid \lambda$
 - $B \rightarrow Aa$
 - $C \rightarrow cCD$
 - $D \rightarrow ddd$
- 4B. Convert the following grammar into CNF:
 - $S \rightarrow AB \mid aB$
 - $A \rightarrow aab \mid \lambda$
 - B→ bbA
- 4C. Draw a NFA which accepts the language associated with the regular expression $0^*1(0+10^*)1^*$.
- 4D. Give the regular expression for the following:
 - i) $L=\{a, ab, abb, c, cb, cbb....\}$
 - ii) $L = \{a^n ba^{2m} c^{3p} : m \ge 0, n \ge 1, p \ge 1 \}$

(7+6+3+(2+2) = 20 marks)

- 5A. Convert the following grammar into Greibach Normal Form:
 - S → abSb | aa
- Deterministic Pushdown 5B. Obtain Automaton to accept language $L(M) = \{ w \in W^R \mid w \in \{a,b\}^* \}$ where w^R is the reverse of w. Show the acceptance of the string with one example.

- 5C. Is the Pushdown automaton corresponding to the language $L = \{a^n b^n \mid n \ge 1\}$ is deterministic?
- 5D. Show that the language L= $\{ww : w \in \{a,b\}^*\}$ is not context free using pumping lemma.

(3+7+7+3 = 20 marks)

- 6A. Show that the family of context-free languages is closed under union, concatenation and star-closure.
- 6B. Obtain the corresponding non-deterministic Pushdown automaton for the following grammar:

S → aABC

 $A \rightarrow aB \mid a$

 $B \rightarrow bA \mid b$

 $C \rightarrow a$

Check the acceptance of the string for 'aabba'

(12+8 = 20 marks)

- 7A. Design a Turing Machine with no more than three states that accepts the language L(a (a + b) *). Assume that $\Sigma = \{a,b\}$
- 7B. Design a Turing Machine that accepts the language $L = \{w : |w| \text{ is even, } w \in \{a,b\}^* \}$.
- 7C. Explain Off-Line Turing machine with neat diagram.
- 7D. Explain about Universal Turing Machine with neat diagram.

(6+6+4+4=20 marks)

- 8A. Explain with suitable diagrams:
 - i) Turing machine with Semi Infinite Tape
- ii) Linear Bounded Automata
- iii) Nondeterministic Turing Machine
- 8B. Construct a Turing machine that accepts the language L(aa*).
- 8C. Explain Chomsky Hierarchy with diagrams that shows the relationship among different languages.
- 8D. Explain the following:
 - i) Unrestricted Grammar
- ii) Context-Sensitive Grammar

((3+3+3)+3+4+(2+2) = 20 marks)